scispace - formally typeset
Search or ask a question
Topic

Proteolytic enzymes

About: Proteolytic enzymes is a research topic. Over the lifetime, 23096 publications have been published within this topic receiving 835544 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The unique structure of papain gives it the functionality that helps elucidate how proteolytic enzymes work and also makes it valuable for a variety of purposes.
Abstract: Papain is a plant proteolytic enzyme for the cysteine proteinase family cysteine protease enzyme in which enormous progress has been made to understand its functions. Papain is found naturally in papaya (Carica papaya L.) manufactured from the latex of raw papaya fruits. The enzyme is able to break down organic molecules made of amino acids, known as polypeptides and thus plays a crucial role in diverse biological processes in physiological and pathological states, drug designs, industrial uses such as meat tenderizers and pharmaceutical preparations. The unique structure of papain gives it the functionality that helps elucidate how proteolytic enzymes work and also makes it valuable for a variety of purposes. In the present review, its biological importance, properties and structural features that are important to an understanding of their biological function are presented. Its potential for production and market opportunities are also discussed.

185 citations

Journal ArticleDOI
TL;DR: The anatomy, histology and digestive enzymes of the mid-intestine of the tsetse-fly have been investigated, and an attempt has been made to determine the functions of the various parts and to observe the changes to which they are subject during the digestion of blood.
Abstract: The anatomy, histology and digestive enzymes of the mid-intestine of the tsetse-fly have been investigated, and an attempt has been made to determine the functions of the various parts and to observe the changes to which they are subject during the digestion of blood.Histologically the mid-gut of Glossina consists of three regions:(i) An anterior segment of small, pale-staining, irregularly columnar cells, which comprises about half the total length of the mid-gut. The zone of giantcells containing bacteroids, which is very limited in extent, lies at about the middle of this region.(ii) A middle segment of large, deeply staining cells, heaped together in the resting state, which is separated abruptly from the anterior segment.(iii) A posterior segment, arising by gradual transition from the middle segment, composed of regular columnar cells.After a meal the blood is concentrated by the removal of fluid in the anterior segment but it shows no other change in this region. The giant-cells are greatly flattened but they do not regularly discharge the bacteroids which they contain and there is no evidence that these organisms play any part in the digestion of blood. Their possible function has been discussed.During digestion the cells in the middle segment contain globules of secretion, and vacuolated buds of cytoplasm are set free and disintegrate in the lumen. The blood shows an abrupt change on reaching this region; it turns black where it is in contact with the epithelium and amorphous masses of altered blood pigment are deposited.In the posterior segment, the epithelial cells become greatly vacuolated later in digestion and are probably concerned chiefly in absorption.The distribution of digestive enzymes agrees with these histological observations. The salivary glands and proventriculus contain no digestive enzymes, and the anterior and posterior segments of the mid-gut also are practically inactive. But the middle segment produces a very active tryptase which agrees in its pH-activity curve and other properties with the tryptase of the cockroach. A peptidase also is present but, except for a very weak amylase, enzymes acting upon carbohydrates are absent. The contents of the mid-gut are always slightly acid (about pH 6·5) and the tryptase present is well adapted to work at this reaction.These findings have been contrasted with those in a non-blood-sucking muscid (Calliphora). Here the salivary glands secrete an active amylase and the mid-gut is rich in amylase, invertase and maltase, whereas the proteolytic enzymes are extremely weak.Some observations have been made upon the tracheal supply to the walls of the gut. The epithelial cells of the middle segment have been shown to contain a very rich supply of intracellular tracheoles. These are usually difficult to make out in the resting cells but after a large meal the surface of the cells is ruptured and blood pigment enters the tracheoles and may extend to the sub-epithelial tracheoles and tracheae or even to quite large tracheal trunks. As the epithelial cells are flattened by the pressure of the meal, this pigment is set free in the lumen in the form of dark rods of haematin, which often bear a superficial resemblance to bacteria. The pigment in the deeper tubes appears to be slowly absorbed later. Intracellular tracheoles similar to these are present also in the mid-gut of Calliphora.The proventriculus in Glossina is a complex and has always been a puzzling structure. It has been shown that it acts as a sphincter between the fore-gut and mid-gut and that it is responsible for the production of the peritrophic membrane. This membrane, which is composed of chitin but contains a small quantity of protein, is secreted in the form of a fluid by the ring of large epithelial cells at the base of the proventriculus. The fluid is pressed and condensed to form a uniform membrane by being drawn through the cleft between the wall of the proventriculus and the funnel-shaped invagination of the fore-gut.The function of the peritrophic membrane has been discussed and it has been shown that it is freely permeable to digestive enzymes and to haemoglobin.

185 citations

Journal ArticleDOI
TL;DR: It is concluded that fibrinogen interacts with the leukocyte integrin Mac-1 through a novel recognition site that is not shared with other known integrins that function as fibr inogen receptors.

185 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the placentas from women with preeclampsia contain clumps of misfolded protein, which may be causing the disease and can be detected in the patients’ urine, suggesting that it may be possible to detect early preeClampsia with a urine test.
Abstract: Preeclampsia is a pregnancy-specific disorder of unknown etiology and a leading contributor to maternal and perinatal morbidity and mortality worldwide. Because there is no cure other than delivery, preeclampsia is the leading cause of iatrogenic preterm birth. We show that preeclampsia shares pathophysiologic features with recognized protein misfolding disorders. These features include urine congophilia (affinity for the amyloidophilic dye Congo red), affinity for conformational state-dependent antibodies, and dysregulation of prototype proteolytic enzymes involved in amyloid precursor protein (APP) processing. Assessment of global protein misfolding load in pregnancy based on urine congophilia (Congo red dot test) carries diagnostic and prognostic potential for preeclampsia. We used conformational state-dependent antibodies to demonstrate the presence of generic supramolecular assemblies (prefibrillar oligomers and annular protofibrils), which vary in quantitative and qualitative representation with preeclampsia severity. In the first attempt to characterize the preeclampsia misfoldome, we report that the urine congophilic material includes proteoforms of ceruloplasmin, immunoglobulin free light chains, SERPINA1, albumin, interferon-inducible protein 6-16, and Alzheimer's β-amyloid. The human placenta abundantly expresses APP along with prototype APP-processing enzymes, of which the α-secretase ADAM10, the β-secretases BACE1 and BACE2, and the γ-secretase presenilin-1 were all up-regulated in preeclampsia. The presence of β-amyloid aggregates in placentas of women with preeclampsia and fetal growth restriction further supports the notion that this condition should join the growing list of protein conformational disorders. If these aggregates play a pathophysiologic role, our findings may lead to treatment for preeclampsia.

185 citations

Journal ArticleDOI
TL;DR: A body of evidence has begun to emerge that supports a unifying model wherein a small group of membrane-tethered enzymes, termed the membrane-type matrix metalloproteinases (MT-MMPs), plays a dominant role in regulating cancer cell and stromal cell, traffic through the extracellular matrix barriers assembled by host tissues in vivo.
Abstract: A seminal event in cancer progression is the ability of the neoplastic cell to mobilize the necessary machinery to breach surrounding extracellular matrix barriers while orchestrating a host stromal response that ultimately supports tissue-invasive and metastatic processes. With over 500 proteolytic enzymes identified in the human genome, interconnecting webs of protease-dependent and protease-independent processes have been postulated to drive the cancer cell invasion program via schemes of daunting complexity. Increasingly, however, a body of evidence has begun to emerge that supports a unifying model wherein a small group of membrane-tethered enzymes, termed the membrane-type matrix metalloproteinases (MT-MMPs), plays a dominant role in regulating cancer cell, as well as stromal cell, traffic through the extracellular matrix barriers assembled by host tissues in vivo. Understanding the mechanisms that underlie the regulation and function of these metalloenzymes as host cell populations traverse the dynamic extracellular matrix assembled during neoplastic states should provide new and testable theories regarding cancer invasion and metastasis.

185 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Cell culture
133.3K papers, 5.3M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
2022113
2021358
2020434
2019358
2018472