scispace - formally typeset
Search or ask a question
Topic

Proteolytic enzymes

About: Proteolytic enzymes is a research topic. Over the lifetime, 23096 publications have been published within this topic receiving 835544 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The design, synthesis, and evaluation of an activatable probe shows great promise for enabling detection of the cleaved probe in the presence of high levels of nonactivated, uncleaved probe, a difficult task to attain in absorbance-based modality.
Abstract: Photoacoustic tomography is a rapidly growing imaging modality that can provide images of high spatial resolution and high contrast at depths up to 5 cm. We report here the design, synthesis, and evaluation of an activatable probe that shows great promise for enabling detection of the cleaved probe in the presence of high levels of nonactivated, uncleaved probe, a difficult task to attain in absorbance-based modality. Before the cleavage by its target, proteolytic enzyme MMP-2, the probe, an activatable cell-penetrating peptide, Ceeee[Ahx]PLGLAGrrrrrK, labeled with two chromophores, BHQ3 and Alexa750, shows photoacoustic signals of similar intensity at the two wavelengths corresponding to the absorption maxima of the chromophores, 675 and 750 nm. Subtraction of the images taken at these two wavelengths makes the probe effectively photoacoustically silent, as the signals at these two wavelengths essentially cancel out. After the cleavage, the dye associated with the cell-penetrating part of the probe, BHQ3, accumulates in the cells, while the other dye diffuses away, resulting in photoacoustic signal seen at only one of the wavelengths, 675 nm. Subtraction of the photoacoustic images at two wavelengths reveals the location of the cleaved (activated) probe. In the search for the chromophores that are best suited for photoacoustic imaging, we have investigated the photoacoustic signals of five chromophores absorbing in the near-infrared region. We have found that the photoacoustic signal did not correlate with the absorbance and fluorescence of the molecules, as the highest photoacoustic signal arose from the least absorbing quenchers, BHQ3 and QXL 680.

175 citations

Journal ArticleDOI
TL;DR: Optimizing nutriture, including diets rich in fruit and vegetables, may provide the least costly and most practicable means to delay cataract.

175 citations

Journal ArticleDOI
TL;DR: A simple mathematical model based on the theory of reinforced random walks coupled with Michaelis-Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both tumor and macrophage derived angiogenic factors into proteolytic enzyme which in turn degrade the basal lamina is extended.
Abstract: In this paper, a simple mathematical model developed in H.A. Levine, B.D. Sleeman, M. Nilsen-Hamilton [J. Math. Biol., in press] to describe the initiation of capillary formation in tumor angiogenesis is extended to include the roles of pericytes and macrophages in regulating angiogenesis. The model also allows for the presence of anti-angiogenic (angiostatic) factors. The model is based on the observation that angiostatin can prevent the degradation of fibronectin in the basal lamina by inhibiting the catalytic action of active proteolytic enzyme. That is, it is proposed that the inhibitor 'deactivates' the protease but that it does not reduce the over all concentration of the protease. It consequently explores the possibility of preventing neovascular capillaries from migrating through the extra-cellular matrix toward the tumor by inhibiting protease action. The model is based on the theory of reinforced random walks coupled with Michaelis-Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both tumor and macrophage derived angiogenic factors into proteolytic enzyme which in turn degrade the basal lamina. A simple catalytic reaction is proposed for the degradation of the basal lamina by the active proteases. A mechanism, in which the angiostatin acts as a protease inhibitor is discussed which has been substantiated experimentally. A second mechanism for the production of protease inhibitor from angiostatin by endothelial cells is proposed to be of Michaelis-Menten type. Mathematically, this mechanism includes the former as a subcase.

175 citations

Journal ArticleDOI
R. L. Van Etten1, R Davidson1, Panayiotis E. Stevis1, H MacArthur1, D L Moore1 
TL;DR: The pairing of the half-cysteine residues of human prostatic acid phosphatase was established by proteolytic digestion and analysis of the resulting peptide mixtures by fast atom bombardment mass spectrometry (FAB-MS), and a conserved RHGXRXP sequence is present in the prostatic, lysosomal, Escherichia coli, and yeast acids and is predicted to be of mechanistic significance.

175 citations

Journal ArticleDOI
TL;DR: These modified enzymes are examples on how the different activities of an enzyme can be perturbed by “protein engineering”, hence rendering the enzyme particularly suitable for certain processes.
Abstract: Carboxypeptidases are proteolytic enzymes which only cleave the C-terminal peptide bond in polypeptides. Those characterized until now can, dependent on their catalytic mechanism, be classified as either metallo carboxypeptidases or as serine carboxypeptidases. Enzymes from the latter group are found in the vacuoles of higher plants and fungi and in the lysosomes of animal cells. Many fungi, in addition, excrete serine carboxypeptidases. Apparently, bacteria do not employ this group of enzymes.

174 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Cell culture
133.3K papers, 5.3M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
2022113
2021358
2020434
2019358
2018472