scispace - formally typeset
Search or ask a question
Topic

Proteolytic enzymes

About: Proteolytic enzymes is a research topic. Over the lifetime, 23096 publications have been published within this topic receiving 835544 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that the presence of the spliced sequence introduces new protease-sensitive sites in the large TN-C isoform, which seems to be a specific component of the provisional extracellular matrix.

161 citations

Journal ArticleDOI
TL;DR: The hypothesis that the G/G genotype is over-represented in Alzheimer’s disease in an additional independent data set and the presence of the G allele was associated with an increase in Aβ burden in a small series is tested.
Abstract: alpha2-Macroglobulin (A2M) is a proteinase inhibitor found in association with senile plaques (SP) in Alzheimer's disease (AD). A2M has been implicated biochemically in binding and degradation of the amyloid beta (Abeta) protein which accumulates in SP. We studied the relationship between Alzheimer's disease and a common A2M polymorphism, Val1000 (GTC)/Ile1000 (ATC), which occurs near the thiolester active site of the molecule. In an initial exploratory data set (90 controls and 171 Alzheimer's disease) we noted an increased frequency of the G/G genotype from 0.07 to 0.12. We therefore tested the hypothesis that the G/G genotype is over-represented in Alzheimer's disease in an additional independent data set: a group of 359 controls and 566 Alzheimer's disease patients. In the hypothesis testing cohort, the G/G genotype increased from 0.07 in controls to 0.12 in Alzheimer's disease (P < 0.05, Fisher's exact test). The odds ratio for Alzheimer's disease associated with the G/G genotype was 1.77 (1.16-2.70, P < 0.01) and in combination with APOE4 was 9.68 (95% CI 3.91-24.0, P < 0.001). The presence of the G allele was associated with an increase in Abeta burden in a small series. The A2M receptor, A2M-r/LRP, is a multifunctional receptor whose ligands include apolipoprotein E and the amyloid precursor protein. These four proteins have each been genetically linked to Alzheimer's disease, suggesting that they may participate in a common disease pathway.

161 citations

Journal Article
TL;DR: The results of the second part of this study show that procyanidines, in addition to free radical scavenging action, strongly and non-competitively, inhibit xanthine oxidase activity, the enzyme which triggers the oxy radical cascade.
Abstract: The scavenging by procyanidines (polyphenol oligomers from Vitis vinifera seeds, CAS 85594-37-2) of reactive oxygen species (ROS) involved in the onset (HO degrees) and the maintenance of microvascular injury (lipid radicals R degrees, RO degrees, ROO degrees) has been studied in phosphatidylcholine liposomes (PCL), using two different models of free radical generation: a) iron-promoted and b) ultrasound-induced lipid peroxidation. In a) lipid peroxidation was assessed by determination of thiobarbituric acid-reactive substances (TBARS); in b) by determination of conjugated dienes, formation of breakdown carbonyl products (as 2,4-dinitrophenylhydrazones) and loss of native phosphatidylcholine. In the iron-promoted (Fenton-driven) model, procyanidines had a remarkable, dose-dependent antilipoperoxidant activity (IC50 = 2.5 mumol/l), more than one order of magnitude greater than that of the monomeric unit catechin (IC50 = 50 mumol/l), activity which is due, at least in part, to their metal-chelating properties. In the more specific model b), which discriminates between the initiator (hydroxyl radical from water sonolysis) and the propagator species of lipid peroxidation (the peroxyl radical, from autooxidation of C-centered radicals), procyanidines are highly effective in preventing conjugated diene formation in both the induction (IC50 = 0.1 mumol/l) and propagation (IC50 = 0.05 mumol/l) phases (the scavenging effect of alpha-tocopherol was weaker, with IC50 of 1.5 and 1.25 mumol/l). In addition, procyanidines at 0.5 mumol/l markedly delayed the onset of the breakdown phase (48 h), totally inhibiting during this time the formation of degradation products (the lag-time induced by alpha-tocopherol was only of 24 h at 10 mumol/l concentration). The HO degrees entrapping capacity of these compounds was further confirmed by UV studies and by electron spin resonance (ESR) spectroscopy, using DMPO as spin trapper: procyanidines markedly reduced, in a dose-dependent fashion, the signal intensity of the DMPO-OH radical spin adduct (100% inhibition at 40 mumol/l). The results of the second part of this study show that procyanidines, in addition to free radical scavenging action, strongly and non-competitively, inhibit xanthine oxidase activity, the enzyme which triggers the oxy radical cascade (IC50 = 2.4 mumol/l). In addition procyanidines non-competitively inhibit the activities of the proteolytic enzymes collagenase (IC50 = 38 mumol/l) and elastase (IC50 = 4.24 mumol/l) and of the glycosidases hyaluronidase and beta-glucuronidase (IC50 = 80 mumol/l and 1.1 mumol/l), involved in the turnover of the main structural components of the extravascular matrix collagen, elastin and hyaluronic acid.(ABSTRACT TRUNCATED AT 400 WORDS)

161 citations

Journal ArticleDOI
TL;DR: Though such limitations require extensive research, the concept of expanding bacteriocins from food preservation to human health opens many fascinating doors, including novel drug delivery systems and anticancer treatment applications.
Abstract: Despite highly specialized international interventions and policies in place today, the rapid emergence and dissemination of resistant bacterial species continue to occur globally, threatening the longevity of antibiotics in the medical sector. In particular, problematic nosocomial infections caused by multidrug resistant Gram-negative pathogens present as a major burden to both patients and healthcare systems, with annual mortality rates incrementally rising. Bacteriocins, peptidic toxins produced by bacteria, offer promising potential as substitutes or conjugates to current therapeutic compounds. These non-toxic peptides exhibit significant potency against certain bacteria (including multidrug-resistant species), while producer strains remain insusceptible to the bactericidal peptides. The selectivity and safety profile of bacteriocins have been highlighted as superior advantages over traditional antibiotics; however, many aspects regarding their efficacy are still unknown. Although active at low concentrations, bacteriocins typically have low in vivo stability, being susceptible to degradation by proteolytic enzymes. Another major drawback lies in the feasibility of large-scale production, with these key features collectively limiting their current clinical application. Though such limitations require extensive research, the concept of expanding bacteriocins from food preservation to human health opens many fascinating doors, including novel drug delivery systems and anticancer treatment applications.

161 citations

Journal ArticleDOI
TL;DR: This review reports applications of immobilized trypsin reactors in which the IMER has been integrated into separation systems such as reversed-phase liquid chromatography or capillary electrophoresis, prior to MS analysis.
Abstract: The ability to rapidly and efficiently digest and identify an unknown protein is of great utility for proteome studies. Identification of proteins via peptide mapping is generally accomplished through proteolytic digestion with enzymes such as trypsin. Limitations of this approach consist in manual sample manipulation steps and extended reaction times for proteolytic digestion. The use of immobilized trypsin for cleavage of proteins is advantageous in comparison with application of its soluble form. Enzymes can be immobilized on different supports and used in flow systems such as immobilized enzyme reactors (IMERs). This review reports applications of immobilized trypsin reactors in which the IMER has been integrated into separation systems such as reversed-phase liquid chromatography or capillary electrophoresis, prior to MS analysis. Immobilization procedures including supports, mode of integration into separation systems, and methods are described.

160 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
88% related
Peptide sequence
84.1K papers, 4.3M citations
87% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Cell culture
133.3K papers, 5.3M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
2022113
2021358
2020434
2019358
2018472