scispace - formally typeset
Search or ask a question
Topic

Proteostasis

About: Proteostasis is a research topic. Over the lifetime, 3587 publications have been published within this topic receiving 121773 citations.


Papers
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is suggested that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease, which may spring from a detailed understanding of the pathways underlying proteome maintenance.
Abstract: Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.

2,803 citations

Journal ArticleDOI
15 Feb 2008-Science
TL;DR: The proteostasis network is described, a set of interacting activities that maintain the health of proteome and the organism that has the potential to ameliorate some of the most challenging diseases of this era.
Abstract: The protein components of eukaryotic cells face acute and chronic challenges to their integrity. Eukaryotic protein homeostasis, or proteostasis, enables healthy cell and organismal development and aging and protects against disease. Here, we describe the proteostasis network, a set of interacting activities that maintain the health of proteome and the organism. Deficiencies in proteostasis lead to many metabolic, oncological, neurodegenerative, and cardiovascular disorders. Small-molecule or biological proteostasis regulators that manipulate the concentration, conformation, quaternary structure, and/or the location of protein(s) have the potential to ameliorate some of the most challenging diseases of our era.

2,140 citations

Journal ArticleDOI
TL;DR: This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.
Abstract: The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.

1,249 citations

Journal ArticleDOI
TL;DR: It is proposed that small molecules can enhance proteostasis by binding to and stabilizing specific proteins (pharmacologic chaperones) or by increasing the protestasis network capacity (proteostasis regulators) and that such therapeutic strategies, including combination therapies, represent a new approach for treating a range of diverse human maladies.
Abstract: Many diseases appear to be caused by the misregulation of protein maintenance. Such diseases of protein homeostasis, or “proteostasis,” include loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer's, Parkinson's, and Huntington's disease). Proteostasis is maintained by the proteostasis network, which comprises pathways that control protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. The decreased ability of the proteostasis network to cope with inherited misfolding-prone proteins, aging, and/or metabolic/environmental stress appears to trigger or exacerbate proteostasis diseases. Herein, we review recent evidence supporting the principle that proteostasis is influenced both by an adjustable proteostasis network capacity and protein folding energetics, which together determine the balance between folding efficiency, misfolding, protein degradation, and aggregation. We review how small molecules can enhance proteostasis by binding to a...

1,071 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
90% related
Phosphorylation
69.3K papers, 3.8M citations
90% related
Programmed cell death
60.5K papers, 3.8M citations
90% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Regulation of gene expression
85.4K papers, 5.8M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023458
2022727
2021585
2020580
2019475
2018413