scispace - formally typeset
Search or ask a question

Showing papers on "Proteotoxicity published in 2008"


Journal ArticleDOI
15 Feb 2008-Science
TL;DR: The proteostasis network is described, a set of interacting activities that maintain the health of proteome and the organism that has the potential to ameliorate some of the most challenging diseases of this era.
Abstract: The protein components of eukaryotic cells face acute and chronic challenges to their integrity. Eukaryotic protein homeostasis, or proteostasis, enables healthy cell and organismal development and aging and protects against disease. Here, we describe the proteostasis network, a set of interacting activities that maintain the health of proteome and the organism. Deficiencies in proteostasis lead to many metabolic, oncological, neurodegenerative, and cardiovascular disorders. Small-molecule or biological proteostasis regulators that manipulate the concentration, conformation, quaternary structure, and/or the location of protein(s) have the potential to ameliorate some of the most challenging diseases of our era.

2,140 citations


Journal ArticleDOI
TL;DR: Although a reduction of insulin signalling can result in diabetes, its reduction can also increase longevity and delay the onset of protein-aggregation-mediated toxicity, and delineate the therapeutic potential of manipulating the insulin/IGF1 signalling pathway for the treatment of neurodegenerative diseases.
Abstract: Distinct human neurodegenerative diseases share remarkably similar temporal emergence patterns, even though different toxic proteins are involved in their onset. Typically, familial neurodegenerative diseases emerge during the fifth decade of life, whereas sporadic cases do not exhibit symptoms earlier than the seventh decade. Recently, mechanistic links between the aging process and toxic protein aggregation, a common hallmark of neurodegenerative diseases, have been revealed. The insulin/insulin-like growth factor 1 (IGF1) signalling pathway — a lifespan, metabolism and stress-resistance regulator — links neurodegeneration to the aging process. Thus, although a reduction of insulin signalling can result in diabetes, its reduction can also increase longevity and delay the onset of protein-aggregation-mediated toxicity. Here we review this apparent paradox and delineate the therapeutic potential of manipulating the insulin/IGF1 signalling pathway for the treatment of neurodegenerative diseases.

293 citations


Journal ArticleDOI
TL;DR: It is demonstrated that dietary restriction confers a general protective effect against proteotoxicity and promotes longevity by a mechanism involving hsf‐1, which is required for enhanced thermotolerance, suppression of proteot toxicity, and lifespan extension by dietary restriction.
Abstract: Dietary restriction increases lifespan and slows the onset of age-associated disease in organisms from yeast to mammals. In humans, several age-related diseases are associated with aberrant protein folding or aggregation, including neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases. We report here that dietary restriction dramatically suppresses age-associated paralysis in three nematode models of proteotoxicity. Similar to its longevity-enhancing properties, dietary restriction protects against proteotoxicity by a mechanism distinct from reduced insulin/IGF-1-like signaling. Instead, the heat shock transcription factor, hsf-1, is required for enhanced thermotolerance, suppression of proteotoxicity, and lifespan extension by dietary restriction. These findings demonstrate that dietary restriction confers a general protective effect against proteotoxicity and promotes longevity by a mechanism involving hsf-1.

251 citations


Journal ArticleDOI
TL;DR: It is established that even subtle changes in the folding homeostasis of an amyloidogenic protein can create a severe proteotoxic gain-of-function phenotype and that chaperone-mediated amyloids assembly can be cytoprotective.
Abstract: Protein conformational diseases are associated with the aberrant accumulation of amyloid protein aggregates, but whether amyloid formation is cytotoxic or protective is unclear. To address this issue, we investigated a normally benign amyloid formed by the yeast prion [RNQ+]. Surprisingly, modest overexpression of Rnq1 protein was deadly, but only when preexisting Rnq1 was in the [RNQ+] prion conformation. Molecular chaperones protect against protein aggregation diseases and are generally believed to do so by solubilizing their substrates. The Hsp40 chaperone, Sis1, suppressed Rnq1 proteotoxicity, but instead of blocking Rnq1 protein aggregation, it stimulated conversion of soluble Rnq1 to [RNQ+] amyloid. Furthermore, interference with Sis1-mediated [RNQ+] amyloid formation exacerbated Rnq1 toxicity. These and other data establish that even subtle changes in the folding homeostasis of an amyloidogenic protein can create a severe proteotoxic gain-of-function phenotype and that chaperone-mediated amyloid assembly can be cytoprotective. The possible relevance of these findings to other phenomena, including prion-driven neurodegenerative diseases and heterokaryon incompatibility in fungi, is discussed.

162 citations


Journal ArticleDOI
TL;DR: Genetic rescue experiments suggest that features common to the constitutively expressed worm AIP-1 and mammalian AIRAPL (but missing in the smaller, arsenite-inducible AIRAP) are important to lifespan extension.
Abstract: The burden of protein misfolding is believed to contribute to aging. However, the links between adaptations to conditions associated with protein misfolding and resistance to the time-dependent attrition of cellular function remain poorly understood. We report that worms lacking aip-1, a homologue of mammalian AIRAP (arsenic-inducible proteasomal 19S regulatory particle-associated protein), are not only impaired in their ability to resist exposure to arsenite but also exhibit shortened lifespan and hypersensitivity to misfolding-prone proteins under normal laboratory conditions. Mammals have a second, constitutively expressed AIRAP-like gene (AIRAPL) that also encodes a proteasome-interacting protein, which shares with AIRAP the property of enhancing peptide accessibility to the proteasome's active site. Genetic rescue experiments suggest that features common to the constitutively expressed worm AIP-1 and mammalian AIRAPL (but missing in the smaller, arsenite-inducible AIRAP) are important to lifespan extension. In worms, a single AIRAP-related protein links proteasomal adaptation to environmental stress with resistance to both proteotoxic insults and maintenance of animal life span under normal conditions.

100 citations


Journal ArticleDOI
TL;DR: The data identify Sir2 and AMPK inhibition as therapeutic strategies for muscle protection in OPMD, extending the value of druggable proteins in cell maintenance networks to polyalanine diseases.
Abstract: Oculopharyngeal muscular dystrophy (OPMD) is caused by polyalanine expansion in nuclear protein PABPN1 [poly(A) binding protein nuclear 1] and characterized by muscle degeneration. Druggable modifiers of proteotoxicity in degenerative diseases, notably the longevity modulators sirtuins, may constitute useful therapeutic targets. However, the modifiers of mutant PABPN1 are unknown. Here, we report that longevity and cell metabolism modifiers modulate mutant PABPN1 toxicity in the muscle cell. Using PABPN1 nematodes that show muscle cell degeneration and abnormal motility, we found that increased dosage of the sirtuin and deacetylase sir-2.1/SIRT1 exacerbated muscle pathology, an effect dependent on the transcription factor daf-16/FoxO and fuel sensor aak-2/AMPK (AMP-activated protein kinase), while null mutants of sir-2.1, daf-16 and aak-2 were protective. Consistently, the Sir2 inhibitor sirtinol was protective, whereas the Sir2 and AMPK activator resveratrol was detrimental. Furthermore, rescue by sirtinol was dependent on daf-16 and not aak-2, whereas aggravation by resveratrol was dependent on aak-2 and not daf-16. Finally, the survival of mammalian cells expressing mutant PABPN1 was promoted by sirtinol and decreased by resveratrol. Altogether, our data identify Sir2 and AMPK inhibition as therapeutic strategies for muscle protection in OPMD, extending the value of druggable proteins in cell maintenance networks to polyalanine diseases.

72 citations


Journal ArticleDOI
TL;DR: It is demonstrated that protein aggregation is a proximal event triggering autophagic clearance mechanisms, situate heart disease stemming from environmental stress in the category of proteinopathy and raise important new questions regarding molecular events that elicit adaptive and maladaptive autophagy.
Abstract: The heart is capable of robust structural remodeling, sometimes improving performance and sometimes leading to failure. Recent studies have uncovered a critical role for autophagy in disease-related remodeling of the cardiomyocyte. We have shown previously that hemodynamic load elicits a maladaptive autophagic response in cardiomyocytes which contributes to disease progression. In a recent study, we went on to demonstrate that protein aggregation is a proximal event triggering autophagic clearance mechanisms. The ubiquitin-proteasome-dependent pathways of protein clearance are similarly activated in parallel with processing of stress-induced protein aggregates into aggresomes and clearance through autophagy. These findings in the setting of pressure overload contrast with protein aggregation occurring in a model of protein chaperone malfunction in myocytes, where activation of autophagy is beneficial, antagonizing disease progression. Our findings situate heart disease stemming from environmental stress in the category of proteinopathy and raise important new questions regarding molecular events that elicit adaptive and maladaptive autophagy.

19 citations


Book ChapterDOI
01 Jan 2008
TL;DR: The exploration of mechanisms argues that the Insulin/IGF-1 Signaling pathway enables the emergence of neurodegeneration late in life by reducing cellular capabilities to counter toxic protein aggregation.
Abstract: Aberrant protein aggregation is mechanistically linked to late onset human neurodegenerations such as Parkinson’s, Huntington’s and Alzheimer’s diseases. Why these disorders emerge late in life is a principal enigma, however, recent results indicate that the aging process plays an active role in enabling their emergence. Perhaps the best characterized regulator of the aging process in worms, flies and mice is the Insulin/IGF-1 Signaling (IIS) pathway. In worms, IIS reduction results in activation of the FOXO-like transcription factor, DAF-16, resulting in enhanced stress resistance and longevity. The benefits associated with reduced IIS are also dependent upon another transcription factor, heat shock factor 1 (HSF-1). Reduced IIS also protects worms from proteotoxicity by regulating opposing activities: HSF-1 promotes disaggregation, while DAF-16 mediates protective active aggregation. The exploration of these mechanisms argues that the IIS enables the emergence of neurodegeneration late in life by reducing cellular capabilities to counter toxic protein aggregation. Here we review the recent studies and discuss the current themes and therapeutic potential of the IIS as a link between the aging process and late onset neurodegenerations