scispace - formally typeset
Search or ask a question
Topic

Proteotoxicity

About: Proteotoxicity is a research topic. Over the lifetime, 549 publications have been published within this topic receiving 23151 citations.


Papers
More filters
Posted ContentDOI
09 Oct 2020-bioRxiv
TL;DR: It is reported that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is overexpressed in HGSOC and maintains protein homeostasis and reduces the in vivo metastatic tumor growth in ovarian cancer xenografts.
Abstract: High-grade serous ovarian cancer (HGSOC) is characterized by chromosomal instability, DNA damage, oxidative stress, and high metabolic demand, which exacerbate misfolded, unfolded and damaged protein burden resulting in increased proteotoxicity. However, the underlying mechanisms that maintain protein homeostasis to promote HGSOC growth remain poorly understood. In this study, we report that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is overexpressed in HGSOC and maintains protein homeostasis. UCHL1 expression was markedly increased in HGSOC patient tumors and serous tubal intraepithelial carcinoma (HGSOC precursor lesions). High UCHL1 levels correlated with higher tumor grade and poor patient survival. UCHL1 inhibition reduced HGSOC cell proliferation and invasion through the outer layers of omentum as well as significantly decreased the in vivo metastatic tumor growth in ovarian cancer xenografts. Transcriptional profiling of UCHL1 silenced HGSOC cells revealed the down-regulation of genes implicated with proteasome activity along with the upregulation of endoplasmic reticulum (ER) stress-induced genes. Reduced expression of proteasome subunit alpha 7 (PSMA7) and acylaminoacyl peptide hydrolase (APEH) resulted in a significant decrease in proteasome activity, impaired protein degradation, and abrogated HGSOC growth. Furthermore, the accumulation of polyubiquitinated proteins in the UCHL1 silenced cells led to attenuation of mTORC1 activity and protein synthesis, and induction of terminal unfolded protein response. Collectively, these results indicate that UCHL1 promotes HGSOC growth by mediating protein homeostasis through the PSMA7-APEH-proteasome axis. Implications This study identifies the novel links in the proteostasis network to target protein homeostasis in HGSOC. It recognizes the potential of inhibiting UCHL1 and APEH to sensitize cancer cells to proteotoxic stress and as novel alternative therapeutic approaches.

1 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the PQC network and environmental pollutants' impact on the network, especially through the protein clearance system, and highlight the necessity of detailed knowledge.
Abstract: A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.

1 citations

Journal ArticleDOI
12 Jan 2022-Hemato
TL;DR: The current knowledge and the most recent acquisitions regarding the mechanisms of organ damage in AL amyloidosis are recapitulates, with special emphasis on the heart, and a critical discussion on possible novel treatment targets are provided.
Abstract: The deposition of amyloid light chains (LCs) in target sites translates into tissue damage and organ dysfunction. Clinical and experimental advances have cast new light on the pathophysiology of damage in AL amyloidosis. The currently accepted view is that, besides the alterations caused by fibrillar deposits in the extracellular space, direct proteotoxicity exerted by prefibrillar LC species is an important pathogenic factor. As our knowledge on the pathological species and altered cellular pathways grows, novel potential therapeutic strategies to prevent or reduce damage can be rationally explored. Complementing chemotherapy with approaches aimed at disrupting the deposited fibrils and stabilizing prefibrillar amyloidogenic LC may allow halting or even reverting damage in target sites. This review recapitulates the current knowledge and the most recent acquisitions regarding the mechanisms of organ damage in AL amyloidosis, with special emphasis on the heart, and will provide a critical discussion on possible novel treatment targets.

1 citations

Patent
18 Aug 2016
TL;DR: In this article, the authors provide methods of reducing protein misfolding and/or aggregation in a cell, and treat diseases and disorders associated with protein mis-folding or aggregation.
Abstract: The present disclosure provides methods of reducing protein misfolding and/or aggregation in a cell. The present disclosure provides methods of treating diseases and disorders associated with protein misfolding and/or aggregation.

1 citations


Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
84% related
Programmed cell death
60.5K papers, 3.8M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Phosphorylation
69.3K papers, 3.8M citations
82% related
Transcription factor
82.8K papers, 5.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202262
202166
202065
201950
201832