scispace - formally typeset
Search or ask a question
Topic

Proteotoxicity

About: Proteotoxicity is a research topic. Over the lifetime, 549 publications have been published within this topic receiving 23151 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide bioinformatic evidence of dysregulation of mitochondrial and proteostasis pathways in muscle aging and diseases, and show accumulation of amyloid-like deposits and mitochondrial dysfunction during natural aging in the body wall muscle of C. elegans, in human primary myotubes, and in mouse skeletal muscle, partially phenocopying inclusion body myositis (IBM).

35 citations

Journal ArticleDOI
TL;DR: The authors found that muscle cells seem to manage misfolded mutSOD1 more efficiently than motoneurons, thus the toxicity in muscle cells may not directly depend on aggregation.
Abstract: ALS (amyotrophic lateral sclerosis), a fatal motoneuron (motor neuron) disease, occurs in clinically indistinguishable sporadic (sALS) or familial (fALS) forms. Most fALS-related mutant proteins identified so far are prone to misfolding, and must be degraded in order to protect motoneurons from their toxicity. This process, mediated by molecular chaperones, requires proteasome or autophagic systems. Motoneurons are particularly sensitive to misfolded protein toxicity, but other cell types such as the muscle cells could also be affected. Muscle-restricted expression of the fALS protein mutSOD1 (mutant superoxide dismutase 1) induces muscle atrophy and motoneuron death. We found that several genes have an altered expression in muscles of transgenic ALS mice at different stages of disease. MyoD, myogenin, atrogin-1, TGFβ1 (transforming growth factor β1) and components of the cell response to proteotoxicity [HSPB8 (heat shock 22 kDa protein 8), Bag3 (Bcl-2-associated athanogene 3) and p62] are all up-regulated by mutSOD1 in skeletal muscle. When we compared the potential mutSOD1 toxicity in motoneuron (NSC34) and muscle (C2C12) cells, we found that muscle ALS models possess much higher chymotryptic proteasome activity and autophagy power than motoneuron ALS models. As a result, mutSOD1 molecular behaviour was found to be very different. MutSOD1 clearance was found to be much higher in muscle than in motoneurons. MutSOD1 aggregated and impaired proteasomes only in motoneurons, which were particularly sensitive to superoxide-induced oxidative stress. Moreover, in muscle cells, mutSOD1 was found to be soluble even after proteasome inhibition. This effect could be associated with a higher mutSOD1 autophagic clearance. Therefore muscle cells seem to manage misfolded mutSOD1 more efficiently than motoneurons, thus mutSOD1 toxicity in muscle may not directly depend on aggregation.

34 citations

Journal ArticleDOI
TL;DR: Examination of aspects of proteotoxicity caused by Rnq1-green fluorescent protein (GFP) and a huntingtin's protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q), which is dependent upon the intracellular presence of [RNQ+] prions, found that assembly of proteins to a benign state occurs with different efficiencies in the cytosol and nucleus.
Abstract: Onset of proteotoxicity is linked to change in the subcellular location of proteins that cause misfolding diseases. Yet, factors that drive changes in disease protein localization and the impact of residence in new surroundings on proteotoxicity are not entirely clear. To address these issues, we examined aspects of proteotoxicity caused by Rnq1-green fluorescent protein (GFP) and a huntingtin's protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q), which is dependent upon the intracellular presence of [RNQ+] prions. Increasing heat-shock protein 40 chaperone activity before Rnq1-GFP expression, shifted Rnq1-GFP aggregation from the cytosol to the nucleus. Assembly of Rnq1-GFP into benign amyloid-like aggregates was more efficient in the nucleus than cytosol and nuclear accumulation of Rnq1-GFP correlated with reduced toxicity. [RNQ+] prions were found to form stable complexes with Htt-103Q, and nuclear Rnq1-GFP aggregates were capable of sequestering Htt-103Q in the nucleus. On accumulation in the nucleus, conversion of Htt-103Q into SDS-resistant aggregates was dramatically reduced and Htt-103Q toxicity was exacerbated. Alterations in activity of molecular chaperones, the localization of intracellular interaction partners, or both can impact the cellular location of disease proteins. This, in turn, impacts proteotoxicity because the assembly of proteins to a benign state occurs with different efficiencies in the cytosol and nucleus.

34 citations

Journal ArticleDOI
TL;DR: This work has identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shockprotein genes.

34 citations

Journal ArticleDOI
TL;DR: Findings altogether indicate that WA mediated inhibition of proteasomal degradation system and perturbation of autophagy, i.e. suppression of both the intracellular degradation systems caused accumulation of ubiquitinated proteins, which in turn led to unfolded protein response and ER stress mediated proteotoxicity in human breast cancer cell-lines, MCF-7 and MDA-MB-231.

34 citations


Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
84% related
Programmed cell death
60.5K papers, 3.8M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Phosphorylation
69.3K papers, 3.8M citations
82% related
Transcription factor
82.8K papers, 5.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202327
202262
202166
202065
201950
201832