scispace - formally typeset
Search or ask a question
Topic

Protoplanetary disk

About: Protoplanetary disk is a research topic. Over the lifetime, 2637 publications have been published within this topic receiving 112252 citations. The topic is also known as: proplyd & Protoplanetary disk.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors calculate the rate at which angular momentum and energy are transferred between a disk and a satellite which orbit the same central mass, and show that substantial changes in both the structure of the disk and the orbit of Jupiter must have taken place on a time scale of a few thousand years.
Abstract: We calculate the rate at which angular momentum and energy are transferred between a disk and a satellite which orbit the same central mass. A satellite which moves on a circular orbit exerts a torque on the disk only in the immediate vicinity of its Lindblad resonances. The direction of angular momentum transport is outward, from disk material inside the satellite's orbit to the satellite and from the satellite to disk material outside its orbit. A satellite with an eccentric orbit exerts a torque on the disk at corotation resonances as well as at Lindblad resonances. The angular momentum and energy transfer at Lindblad resonances tends to increase the satellite's orbit eccentricity whereas the transfer at corotation resonances tends to decrease it. In a Keplerian disk, to lowest order in eccentricity and in the absence of nonlinear effects, the corotation resonances dominate by a slight margin and the eccentricity damps. However, if the strongest corotation resonances saturate due to particle trapping, then the eccentricity grows. We present an illustrative application of our results to the interaction between Jupiter and the protoplanetary disk. The angular momentum transfer is shown to be so rapid that substantial changes in both the structure of the disk and the orbit of Jupiter must have taken place on a time scale of a few thousand years.

1,601 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the torque on a planet and the resultant radial migration of the planet during its formation in a protoplanetary disk and derived a general torque formula for corotation resonances, which is also applicable to 2D disks.
Abstract: Gravitational interaction between a planet and a three-dimensional isothermal gaseous disk is studied. In the present paper we mainly examine the torque on a planet and the resultant radial migration of the planet. A planet excites density waves at Lindblad and corotation resonances and experiences a negative torque by the density waves, which causes a rapid inward migration of the planet during its formation in a protoplanetary disk. We formulate the linear wave excitation in three-dimensional isothermal disks and calculate the torques of Lindblad resonances and corotation resonances. For corotation resonances, a general torque formula is newly derived, which is also applicable to two-dimensional disks. The new formula succeeds in reproducing numerical results on the corotation torques, which do not agree with the previously well-known formula. The net torque of the inner and the outer Lindblad resonances (i.e., the differential Lindblad torque) is caused by asymmetry such as the radial pressure gradient and the scale height variation. In three-dimensional disks, the differential Lindblad torques are generally smaller than those in two-dimensional disks. Especially, the effect of a pressure gradient becomes weak. The scale height variation, which is a purely three-dimensional effect, makes the differential Lindblad torque decrease. As a result, the migration time of a planet is obtained as of the order of 106 yr for an Earth-size planet at 5 AU for a typical disk model, which is longer than the result of two-dimensional calculation by the factor of 2 or 3. The reflected waves from disk edges, which are neglected in the torque calculation, can further weaken the disk-planet interaction.

1,069 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the tidal interaction between a protoplanet and a gaseous protoplanetary disk, and the dynamical evolution of the disk and the orbital migration of the protoplanets in a self-consistent manner.
Abstract: The tidal interaction between a protoplanet and a gaseous protoplanetary disk is investigated, and the dynamical evolution of the disk and the orbital migration of the protoplanet in a self-consistent manner is considered. It is shown that the orbital migration of a protoplanet does not suppress the tendency for tidal truncation in the vicinity of its orbit. If the necessary condition for tidal truncation is satisfied, the protoplanet induces a tidal feedback mechanism that regulates the rate of angular momentum transfer between the protoplanet and the disk. Significant orbital migration can only occur on the viscous evolution time scale of the disk.

1,043 citations

Journal ArticleDOI
TL;DR: In this article, a review describes the theoretical framework within which debris disk evolution takes place and shows how that framework has been constrained by observations, including infrared photometry of large numbers of debris disks, providing snapshots of the dust present at different evolutionary phases.
Abstract: Circumstellar dust exists around several hundred main sequence stars. For the youngest stars, that dust could be a remnant of the protoplanetary disk. Mostly it is inferred to be continuously replenished through collisions between planetesimals in belts analogous to the Solar System’s asteroid and Kuiper belts, or in collisions between growing protoplanets. The evolution of a star’s debris disk is indicative of the evolution of its planetesimal belts and may be influenced by planet formation processes, which can continue throughout the first gigayear as the planetary system settles to a stable configuration and planets form at large radii. Evidence for that evolution comes from infrared photometry of large numbers of debris disks, providing snapshots of the dust present at different evolutionary phases, as well as from images of debris disk structure. This review describes the theoretical framework within which debris disk evolution takes place and shows how that framework has been constrained by observations.

985 citations


Network Information
Related Topics (5)
Stars
64.3K papers, 1.9M citations
91% related
Metallicity
19.4K papers, 966.7K citations
91% related
Planet
27K papers, 980.6K citations
91% related
Elliptical galaxy
20.9K papers, 1M citations
91% related
Galaxy
109.9K papers, 4.7M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022218
2021186
2020181
2019196
2018221