Topic
Protoporphyrin IX
About: Protoporphyrin IX is a(n) research topic. Over the lifetime, 2250 publication(s) have been published within this topic receiving 65544 citation(s). The topic is also known as: PpIX.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In the ongoing clinical trial of ALA-induced Pp IX photodynamic therapy, the response rate for basal cell carcinomas following a single treatment has been 90% complete response and 7.5% partial response for the first 80 lesions treated.
Abstract: 5-Aminolaevulinic acid (ALA) is a precursor of protoporphyrin IX (Pp IX) in the biosynthetic pathway for haem. Certain types of cells have a large capacity to synthesize Pp IX when exposed to an adequate concentration of exogenous ALA. Since the conversion of Pp IX into haem is relatively slow, such cells tend to accumulate photosensitizing concentrations of Pp IX. Pp IX photosensitization can be induced in cells of the epidermis and its appendages, but not in the dermis. Moreover, since ALA in aqueous solution passes readily through abnormal keratin, but not through normal keratin, the topical application of ALA in aqueous solution to actinic keratoses or superficial basal cell or squamous cell carcinomas induces Pp IX photosensitization that is restricted primarily to the abnormal epithelium. Subsequent exposure to photoactivating light selectively destroys such lesions. In our ongoing clinical trial of ALA-induced Pp IX photodynamic therapy, the response rate for basal cell carcinomas following a single treatment has been 90% complete response and 7.5% partial response for the first 80 lesions treated. The cosmetic results have been excellent, and patient acceptance has been very good.
1,499 citations
[...]
TL;DR: Preclinical studies in experimental animals and human volunteers indicate that ALA can induce a localized tissue-specific photosensitization if administered by intradermal injection, opening the possibility of using ALA-induced PpIX to treat tumors that are too thick or that lie too deep to be accessible to either topical or locally injected ALA.
Abstract: The tissue photosensitizer protoporphyrin IX (PpIX) is an immediate precursor of heme in the biosynthetic pathway for heme. In certain types of cells and tissues, the rate of synthesis of PpIX is determined by the rate of synthesis of 5-aminolevulinic acid (ALA), which in turn is regulated via a feedback control mechanism governed by the concentration of free heme. The presence of exogenous ALA bypasses the feedback control, and thus may induce the intracellular accumulation of photosensitizing concentrations of PpIX. However, this occurs only in certain types of cells and tissues. The resulting tissue-specific photosensitization provides a basis for using ALA-induced PpIX for photodynamic therapy. The topical application of ALA to certain malignant and non-malignant lesions of the skin can induce a clinically useful degree of lesion-specific photosensitization. Superficial basal cell carcinomas showed a complete response rate of approximately 79% following a single exposure to light. Recent preclinical studies in experimental animals and human volunteers indicate that ALA can induce a localized tissue-specific photosensitization if administered by intradermal injection. A generalized but still quite tissue-specific photosensitization may be induced if ALA is administered by either subcutaneous or intraperitoneal injection or by mouth. This opens the possibility of using ALA-induced PpIX to treat tumors that are too thick or that lie too deep to be accessible to either topical or locally injected ALA.
1,175 citations
[...]
TL;DR: It is demonstrated that heme, but not its analogs/precursors, induced tumor necrosis factor-α (TNF-α) secretion by macrophages dependently on MyD88, TLR4, and CD14, and these findings support the concept that the broad ligand specificity ofTLR4 and the different activation profiles might in part reside in its ability to recognize different ligands in different binding sites.
Abstract: Heme is an ancient and ubiquitous molecule present in organisms of all kingdoms, composed of an atom of iron linked to four ligand groups of porphyrin. A high amount of free heme, a potential amplifier of the inflammatory response, is a characteristic feature of diseases with increased hemolysis or extensive cell damage. Here we demonstrate that heme, but not its analogs/precursors, induced tumor necrosis factor-α (TNF-α) secretion by macrophages dependently on MyD88, TLR4, and CD14. The activation of TLR4 by heme is exquisitely strict, requiring its coordinated iron and the vinyl groups of the porphyrin ring. Signaling of heme through TLR4 depended on an interaction distinct from the one established between TLR4 and lipopolysaccharide (LPS) since anti-TLR4/MD2 antibody or a lipid A antagonist inhibited LPS-induced TNF-α secretion but not heme activity. Conversely, protoporphyrin IX antagonized heme without affecting LPS-induced activation. Moreover, heme induced TNF-α and keratinocyte chemokine but was ineffective to induce interleukin-6, interleukin-12, and interferon-inducible protein-10 secretion or co-stimulatory molecule expression. These findings support the concept that the broad ligand specificity of TLR4 and the different activation profiles might in part reside in its ability to recognize different ligands in different binding sites. Finally, heme induced oxidative burst, neutrophil recruitment, and heme oxygenase-1 expression independently of TLR4. Thus, our results presented here reveal a previous unrecognized role of heme as an extracellular signaling molecule that affects the innate immune response through a receptor-mediated mechanism.
438 citations
[...]
TL;DR: The biochemistry, structural biology and the mechanisms of tissue-specific regulation are presented in this review along with the key features of the porphyric disorders.
Abstract: Most iron in mammalian systems is routed to mitochondria to serve as a substrate for ferrochelatase. Ferrochelatase inserts iron into protoporphyrin IX to form heme which is incorporated into hemoglobin and cytochromes, the dominant hemoproteins in mammals. Tissue-specific regulatory features characterize the heme biosynthetic pathway. In erythroid cells, regulation is mediated by erythroid-specific transcription factors and the availability of iron as Fe/S clusters. In non-erythroid cells the pathway is regulated by heme-mediated feedback inhibition. All of the enzymes in the heme biosynthetic pathway have been crystallized and the crystal structures have permitted detailed analyses of enzyme mechanisms. All of the genes encoding the heme biosynthetic enzymes have been cloned and mutations of these genes are responsible for a group of human disorders designated the porphyrias and for X-linked sideroblastic anemia. The biochemistry, structural biology and the mechanisms of tissue-specific regulation are presented in this review along with the key features of the porphyric disorders.
386 citations
Journal Article•
[...]
TL;DR: The skin of albino mice given 5-aminolevulinic acid by intraperitoneal injection rapidly developed the characteristic red fluorescence of protoporphyrin IX and appeared to recover completely except for a persistent reduction in the number of hair follicles.
Abstract: The skin of albino mice given 5-aminolevulinic acid (ALA) by intraperitoneal injection rapidly developed the characteristic red fluorescence of protoporphyrin IX. Fluorescence microscopy of frozen tissue sections revealed intense red fluorescence within the sebaceous glands and a much weaker fluorescence within the epidermis and hair follicles. Little or no fluorescence was detected in the dermis, blood vessels, or cartilage of the ear. Light microscopy of skin taken at intervals after whole-body exposure of ALA-injected mice to photoactivating light revealed destruction of sebaceous cells, focal epidermal necrosis with a transient acute inflammation, and diffuse reactive changes in the keratinocytes. The dermis showed transient secondary edema and inflammation. The location and severity of the phototoxic damage correlated well with the location and intensity of the red fluorescence. The light-exposed skin appeared to recover completely except for a persistent reduction in the number of hair follicles.
350 citations