scispace - formally typeset
Search or ask a question

Showing papers on "Protoporphyrin IX published in 2017"


Journal ArticleDOI
TL;DR: Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase.
Abstract: Griseofulvin, an orally active antifungal drug used to treat dermatophyte infections, has a secondary effect of inducing cytochrome P450-mediated production of N-methyl protoporphyrin IX (N-MPP). N-MPP is a potent competitive inhibitor of the heme biosynthetic-enzyme ferrochelatase, and inhibits the growth of cultured erythrocyte stage Plasmodium falciparum. Novel drugs against Plasmodium are needed to achieve malaria elimination. Thus, we investigated whether griseofulvin shows anti-plasmodial activity. We observed that the intraerythrocytic growth of P. falciparum is inhibited in red blood cells pretreated with griseofulvin in vitro. Treatment with 100 μM griseofulvin was sufficient to prevent parasite growth and induce the production of N-MPP. Inclusion of the ferrochelatase substrate PPIX blocked the inhibitory activity of griseofulvin, suggesting that griseofulvin exerts its activity through the N-MPP-dependent inhibition of ferrochelatase. In an ex-vivo study, red blood cells from griseofulvin-treated subjects were refractory to the growth of cultured P. falciparum. However, in a clinical trial griseofulvin failed to show either therapeutic or prophylactic effect in subjects infected with blood stage P. falciparum. Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase.

219 citations


Journal ArticleDOI
TL;DR: As PDT enhances dermal remodeling and resolves chronic inflamation, it has been used to treat cutaneous disorders include actinic keratoses, acne, viral warts, skin rejuvenation, psoriasis, localized scleroderma, some non-melanoma skin cancers and port-wine stains.

130 citations


Journal ArticleDOI
TL;DR: A dominant mutation in the ATPase active site of human CLPX is reported that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX) in human patients, identifying an additional gene that promotes PPIX overproduction and EPP and highlighting the complex gene network contributing to disorders of heme metabolism.
Abstract: Loss-of-function mutations in genes for heme biosynthetic enzymes can give rise to congenital porphyrias, eight forms of which have been described. The genetic penetrance of the porphyrias is clinically variable, underscoring the role of additional causative, contributing, and modifier genes. We previously discovered that the mitochondrial AAA+ unfoldase ClpX promotes heme biosynthesis by activation of δ-aminolevulinate synthase (ALAS), which catalyzes the first step of heme synthesis. CLPX has also been reported to mediate heme-induced turnover of ALAS. Here we report a dominant mutation in the ATPase active site of human CLPX, p.Gly298Asp, that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX). Amassing of PPIX in erythroid cells promotes erythropoietic protoporphyria (EPP) in the affected family. The mutation in CLPX inactivates its ATPase activity, resulting in coassembly of mutant and WT protomers to form an enzyme with reduced activity. The presence of low-activity CLPX increases the posttranslational stability of ALAS, causing increased ALAS protein and ALA levels, leading to abnormal accumulation of PPIX. Our results thus identify an additional molecular mechanism underlying the development of EPP and further our understanding of the multiple mechanisms by which CLPX controls heme metabolism.

60 citations


Journal ArticleDOI
TL;DR: It is demonstrated that heme precursor protoporphyrin IX (GaPPIX) is capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron.
Abstract: Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that Ga PPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through heme-uptake systems, primarily the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

59 citations


Journal ArticleDOI
TL;DR: Red-light excitation of tumor-associated PpIX fluorescence below the surface of the surgical field can be achieved intraoperatively and enables detection of subsurface tumor that is not visualized under conventional blue- light excitation.
Abstract: OBJECTIVE The objective of this study was to detect 5-aminolevulinic acid (ALA)-induced tumor fluorescence from glioma below the surface of the surgical field by using red-light illumination. METHODS To overcome the shallow tissue penetration of blue light, which maximally excites the ALA-induced fluorophore protoporphyrin IX (PpIX) but is also strongly absorbed by hemoglobin and oxyhemoglobin, a system was developed to illuminate the surgical field with red light (620-640 nm) matching a secondary, smaller absorption peak of PpIX and detecting the fluorescence emission through a 650-nm longpass filter. This wide-field spectroscopic imaging system was used in conjunction with conventional blue-light fluorescence for comparison in 29 patients undergoing craniotomy for resection of high-grade glioma, low-grade glioma, meningioma, or metastasis. RESULTS Although, as expected, red-light excitation is less sensitive to PpIX in exposed tumor, it did reveal tumor at a depth up to 5 mm below the resection bed in 22 of 24 patients who also exhibited PpIX fluorescence under blue-light excitation during the course of surgery. CONCLUSIONS Red-light excitation of tumor-associated PpIX fluorescence below the surface of the surgical field can be achieved intraoperatively and enables detection of subsurface tumor that is not visualized under conventional blue-light excitation. Clinical trial registration no.: NCT02191488 (clinicaltrials.gov).

46 citations


Journal ArticleDOI
TL;DR: The results provide important new insights into 5-ALA-based PDD of gliomas, particularly photodetection of SP-defined C6 glioma CSCs by iron chelation based on their ALA-PpIX-Heme metabolism.
Abstract: Cancer stem cells (CSCs) are dominantly responsible for tumor progression and chemo/radio-resistance, resulting in tumor recurrence. 5-aminolevulinic acid (ALA) is metabolized to fluorescent protoporphyrin IX (PpIX) specifically in tumor cells, and therefore clinically used as a reagent for photodynamic diagnosis (PDD) and therapy (PDT) of cancers including gliomas. However, it remains to be clarified whether this method could be effective for CSC detection. Here, using flow cytometry-based analysis, we show that side population (SP)-defined C6 glioma CSCs (GSCs) displayed much less 5-ALA-derived PpIX fluorescence than non-GSCs. Among the C6 GSCs, cells with ultralow PpIX fluorescence exhibited dramatically higher tumorigenicity when transplanted into the immune-deficient mouse brain. We further demonstrated that the low PpIX accumulation in the C6 GSCs was enhanced by deferoxamine (DFO)-mediated iron chelation, not by reserpine-mediated inhibition of PpIX-effluxing ABCG2. Finally, we found that the expression level of the gene for heme oxygenase-1 (HO-1), a heme degradation enzyme, was high in C6 GSCs, which was further up-regulated when treated with 5-ALA. Our results provide important new insights into 5-ALA-based PDD of gliomas, particularly photodetection of SP-defined GSCs by iron chelation based on their ALA-PpIX-Heme metabolism.

42 citations


Journal ArticleDOI
TL;DR: In this article, a mechanism-based combination approach using 5-fluorouracil (5-FU) as a neoadjuvant for ALA-based photodynamic therapy was developed.
Abstract: Photodynamic therapy (PDT), using 5-aminolevulinic acid (ALA) to drive synthesis of protoporphryin IX (PpIX) is a promising, scar-free alternative to surgery for skin cancers, including squamous cell carcinoma (SCC) and SCC precursors called actinic keratoses (AK). In the United States, PDT is only FDA approved for treatment of AK; this narrow range of indications could be broadened if PDT efficacy were improved. Toward that goal, we developed a mechanism-based combination approach using 5-fluorouracil (5-FU) as a neoadjuvant for ALA-based PDT. In mouse models of SCC (orthotopic UV-induced lesions, and subcutaneous A431 and 4T1 tumors), pretreatment with 5-FU for 3 days followed by ALA for 4 hours led to large, tumor-selective increases in PpIX levels, and enhanced cell death upon illumination. Several mechanisms were identified that might explain the relatively improved therapeutic response. Firstly, the expression of key enzymes in the heme synthesis pathway was altered, including upregulated coproporphyrinogen oxidase and downregulated ferrochelatase. Secondly, a 3- to 6-fold induction of p53 in 5-FU pretreated tumors was noted. The fact that A431 contains a mutant form p53 did not prevent the development of a neoadjuvantal 5-FU effect. Furthermore, 5-FU pretreatment of 4T1 tumors (cells that completely lack p53), still led to significant beneficial inductions, i.e., 2.5-fold for both PpIX and PDT-induced cell death. Thus, neoadjuvantal 5-FU combined with PDT represents a new therapeutic approach that appears useful even for p53-mutant and p53-null tumors.

42 citations


Journal ArticleDOI
TL;DR: The data suggest that PpIX-SDT suppress the proliferation of SAS cells via arresting cell cycle at G2/M phase and activating the extrinsic Fas-mediated membrane receptor pathway to induce apoptosis, which is regulated by p53.
Abstract: Sonodynamic therapy (SDT) is an innovative modality for cancer treatment. But the biological effect of SDT on oral squamous cell carcinoma has not been studied. Our previous study has shown that endo-Protoporphyrin IX based SDT (ALA-SDT) could induce apoptosis in human tongue squamous carcinoma SAS cells through mitochondrial pathway. Herein, we investigated the effect of exo- Protoporphyrin based SDT (PpIX-SDT) on SAS cells in vitro and in vivo. We demonstrated that PpIX-SDT increased the ratio of cells in the G2/M phase and induced 3-4 times more cell apoptosis compared to sonocation alone. PpIX-SDT caused cell membrane damage prior to mitochondria damage and upregulated the expression of Fas and Fas L, while the effect was suppressed if cells were pre-treated with p53 inhibitor. Additionally, we examined the SDT-induced cell apoptosis in two cell lines with different p53 status. The increases of p53 expression and apoptosis rate in wild-type p53 SAS cells were found in the SDT group, while p53-mutated HSC-3 cells did not show such increase. Our data suggest that PpIX-SDT suppress the proliferation of SAS cells via arresting cell cycle at G2/M phase and activating the extrinsic Fas-mediated membrane receptor pathway to induce apoptosis, which is regulated by p53.

40 citations


Journal ArticleDOI
TL;DR: In vitro cytotoxicity study showed that PDT with PpIX loaded micelles did exhibit a synergistic effect when combined with erlotinib pretreatment, and this study offers a promising new approach for the improved treatment of localized tumors.

38 citations


Journal ArticleDOI
TL;DR: Fluorescence intensity decreased at low levels of the enzyme, which indicates its critical role in PpIX fluorescence, and the fluorescence intensity proved to correlate with the proliferative activity.
Abstract: Protoporphyrin IX (PpIX) is widely used in photodynamic diagnosis. To date, the details of molecular mechanisms underlying PpIX accumulation in malignant cells after 5-ALA administration remain unclear. The fluorescence of PpIX was studied in human glioma cells. Several cell cultures were established from glioma tumor tissue to study the differences between fluorescence-positive and fluorescence-negative human glioma tumors. The cell cultures demonstrated fluorescence profiles similar to those of source tumor tissues, which allows us to use these cultures in experimental research. Dynamics of the rates of synthesis and degradation of fluorescent protoporphyrin IX was studied in the cultures obtained. In addition, the expression of CPOX, an enzyme involved in PpIX synthesis, was evaluated. mRNA levels of heme biosynthesis enzymes were analyzed, and PpIX fluorescence proved to correlate with the CPOX protein level, whereas no such correlation was observed at the mRNA level. Fluorescence intensity decreased at low levels of the enzyme, which indicates its critical role in PpIX fluorescence. Finally, the fluorescence intensity proved to correlate with the proliferative activity.

33 citations


Journal ArticleDOI
TL;DR: The results reveal the potential therapeutic application of PPIX, ZnPPIX, and MPIX as good models for broad antiviral drug design and confirm the main reactive oxygen species produced by photoactivation of these molecules was singlet oxygen.
Abstract: Virus resistance to antiviral therapies is an increasing concern that makes the development of broad-spectrum antiviral drugs urgent. Targeting of the viral envelope, a component shared by a large number of viruses, emerges as a promising strategy to overcome this problem. Natural and synthetic porphyrins are good candidates for antiviral development due to their relative hydrophobicity and pro-oxidant character. In the present work, we characterized the antiviral activities of protoprophyrin IX (PPIX), Zn-protoporphyrin IX (ZnPPIX), and mesoporphyrin IX (MPIX) against vesicular stomatitis virus (VSV) and evaluated the mechanisms involved in this activity. Treatment of VSV with PPIX, ZnPPIX, and MPIX promoted dose-dependent virus inactivation, which was potentiated by porphyrin photoactivation. All three porphyrins inserted into lipid vesicles and disturbed the viral membrane organization. In addition, the porphyrins also affected viral proteins, inducing VSV glycoprotein cross-linking, which was enhanced by porphyrin photoactivation. Virus incubation with sodium azide and α-tocopherol partially protected VSV from inactivation by porphyrins, suggesting that singlet oxygen (1O2) was the main reactive oxygen species produced by photoactivation of these molecules. Furthermore, 1O2 was detected by 9,10-dimethylanthracene oxidation in photoactivated porphyrin samples, reinforcing this hypothesis. These results reveal the potential therapeutic application of PPIX, ZnPPIX, and MPIX as good models for broad antiviral drug design.

Journal ArticleDOI
TL;DR: Results indicated for the first time that PpIX-loaded polymersomes together with CAP posttreatment could be a promising tool for skin cancer drug delivery with selective toxicity toward melanoma cells sparing healthy fibroblasts.
Abstract: Traditional cancer treatments contain several limitations such as incomplete ablation and multidrug resistance. It is known that photodynamic therapy (PDT) is an effective treatment for several tumor types especially melanoma cells. During the PDT process, protoporphyrin IX (PpIX), an effective photosensitizer, can selectively kill cancer cells by activating a special light source. When tumor cells encapsulate a photosensitizer, they can be easily excited into an excited state by a light source. In this study, cold atmospheric plasma (CAP) was used as a novel light source. Results of some studies have showed that cancer cells can be effectively killed by using either a light source or an individual treatment due to the generation of reactive oxygen species and electrons from a wide range of wavelengths, which suggest that CAP can act as a potential light source for anticancer applications compared with UV light sources. Results of the present in vitro study indicated for the first time that PpIX can be successfully loaded into polymersomes. Most importantly, cell viability studies revealed that PpIX-loaded polymersomes had a low toxicity to healthy fibroblasts (20% were killed) at a concentration of 400 µg/mL, but they showed a great potential to selectively kill melanoma cells (almost 50% were killed). With the application of CAP posttreatment, melanoma cell viability significantly decreased (80% were killed) compared to not using a light source (45% were killed) or using a UV light source (65% were killed). In summary, these results indicated for the first time that PpIX-loaded polymersomes together with CAP posttreatment could be a promising tool for skin cancer drug delivery with selective toxicity toward melanoma cells sparing healthy fibroblasts.

Journal ArticleDOI
TL;DR: There is a need for more standardized culturing protocols when performing a PDT and PT experiments in vitro to avoid large variations in porphyrin profiles and concentrations, the aPDT/PT target compounds, depending on the culturing conditions.

Journal ArticleDOI
TL;DR: Results showed that PpIX-PA exerted its maximum effects without activating resistance pathways and appears to be a good candidate for prostate cancer PDT treatment.

Journal ArticleDOI
TL;DR: A review will highlight the current progress in Ppix-mediated FGR and discuss technical challenges in intraoperative quantification of intracellular PpIX fluorescence during FGR of brain tumor.
Abstract: Surgical removal of tumor mass is a common approach in the management of brain tumors. However, the precise delineation of normal tissue from tumor tissue for a complete resection of tumor mass in brain tumor surgery remains a difficult task for neurosurgeons. Aminolevulinic acid (ALA)-mediated exgogenous fluorescence of protoporphyrin IX (PpIX) is a sensitive approach for tumor imaging. Recent studies suggest that the use of ALA/PpIX-mediated fluorescence-guided resection (FGR) or fluorescence-guided surgery can enable more accurate and complete resection of brain tumors, especially when used in quantitative fashion. This review will highlight the current progress in PpIX-mediated FGR and discuss technical challenges in intraoperative quantification of intracellular PpIX fluorescence during FGR of brain tumor.

Journal ArticleDOI
30 May 2017-PLOS ONE
TL;DR: Doxycycline can potentiate the effect of ALA-PDT to kill tumor cells, which allows for a dose reduction of doxycycline and photodynamic radiation, reducing the occurrence of toxic side effects in vivo.
Abstract: Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous disorders Some NF1 patients develop benign large plexiform neurofibroma(s) at birth, which can then transform into a malignant peripheral nerve sheath tumor (MPNST) There is no curative treatment for this rapidly progressive and easily metastatic neurofibrosarcoma Photodynamic therapy (PDT) has been developed as an anti-cancer treatment, and 5-aminolevulinic (ALA) mediated PDT (ALA-PDT) has been used to treat cutaneous skin and oral neoplasms Doxycycline, a tetracycline derivative, can substantially reduce the tumor burden in human and animal models, in addition to its antimicrobial effects The purpose of this study was to evaluate the effect and to investigate the mechanism of action of combined doxycycline and ALA-PDT treatment of MPNST cells An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the combination of ALA-PDT and doxycycline significantly reduce MPNST survival rate, compared to cells treated with each therapy alone Isobologram analysis showed that the combined treatment had a synergistic effect The increased cytotoxic activity could be seen by an increase in cellular protoporphyrin IX (PpIX) accumulation Furthermore, we found that the higher retention of PpIX was mainly due to increasing ALA uptake, rather than activity changes of the enzymes porphobilinogen deaminase and ferrochelatase The combined treatment inhibited tumor growth in different tumor cell lines, but not in normal human Schwann cells or fibroblasts Similarly, a synergistic interaction was also found in cells treated with ALA-PDT combined with minocycline, but not tetracycline In summary, doxycycline can potentiate the effect of ALA-PDT to kill tumor cells This increased potency allows for a dose reduction of doxycycline and photodynamic radiation, reducing the occurrence of toxic side effects in vivo

Journal ArticleDOI
TL;DR: It is demonstrated that ALA-HPOs significantly enhance phototherapeutic metabolite formation and phototoxicity and correlated well with the observed photot toxicity following exposure of cells to light.
Abstract: Photodynamic therapy (PDT) is a promising treatment strategy for malignant and nonmalignant lesions. 5-Aminolaevulinic acid (ALA) is used as a precursor of the photosensitizer, protoporphyrin IX (PpIX), in dermatology and urology. However, the effectiveness of ALA–PDT is limited by the relatively poor bioavailability of ALA and rapid conversion of PpIX to haem. The main goal of this study was to prepare and investigate a library of single conjugates designed to coadminister the bioactive agents ALA and hydroxypyridinone (HPO) iron chelators. A significant increase in intracellular PpIX levels was observed in all cell lines tested when compared to the administration of ALA alone. The higher PpIX levels observed using the conjugates correlated well with the observed phototoxicity following exposure of cells to light. Passive diffusion appears to be the main mechanism for the majority of ALA–HPOs investigated. This study demonstrates that ALA–HPOs significantly enhance phototherapeutic metabolite formation a...

Journal ArticleDOI
TL;DR: The high heme concentration obtained when hemin was used as a culture additive shows that E. coli has an uptake of heme from its surroundings, and cobalt protoporphyrin IX’s ability to mimic real heme and inhibit the heme acquisition mechanisms is demonstrated.
Abstract: One of the main threats to the achievements in modern medicine is antimicrobial resistance. Molecular targeting of bacterial acquisition mechanisms of heme has been suggested to be an alternative to antibiotics. In the present study, HPLC-MS/MS combined with a simple clean-up based on liquid-liquid extraction has been developed and evaluated for simultaneous determination of heme and porphyrin heme precursors in microorganisms. Experimental design was used to optimize the extraction parameters, to obtain a method with high recovery, low matrix effects, and high precision. The effects of additives in the culture medium on the biosynthesis of heme were studied using Escherichia coli as a model microorganism. 5-Aminolaevulinic acid and hemin increased the heme concentration in E. coli by a factor of 1.5 and 4.5, respectively. Addition of 5-aminolaevulinic acid bypassed the E. coli negative feedback control of heme biosynthesis, which led to high amounts of intracellular porphyrins. The high heme concentration obtained when hemin was used as a culture additive shows that E. coli has an uptake of heme from its surroundings. In contrast, addition of cobalt protoporphyrin IX to the growth medium reduced the amount of heme in E. coli, demonstrating this compound's ability to mimic real heme and inhibit the heme acquisition mechanisms.

Journal ArticleDOI
TL;DR: In vitro evaluation of novel phosphatase-sensitive prodrugs of 5-ALA designed to be activated by ubiquitously expressed phosphatases with much improved chemical stability and reduced acute toxicity profile provides solid basis for future translational development in PC3, MCF7 and U87MG cancer types.
Abstract: 5-aminolevulinc acid (5-ALA)-based photodynamic therapy (PDT) and photodiagnosis (PD) present many advantages over treatments with conventional photosensitizers (PS). It offers great tumor specificity, reduced photosensitivity reactions caused by PS accumulation in non-targeted tissues and also inherent PS metabolism into endogenous non-fluorescent heme. However, chemical instability, low bioavailability and poor pharmacokinetic profile limit systemic efficacy of 5-ALA. Here, we present a comprehensive in vitro evaluation of novel phosphatase-sensitive prodrugs of 5-ALA. These prodrugs are designed to be activated by ubiquitously expressed phosphatases with much improved chemical stability and reduced acute toxicity profile. PpIX kinetic measurements and flow cytometry show accumulation of PpIX upon incubation with phosphatase-sensitive prodrugs in PC3 human prostate cell cancer, MCF7 breast adenocarcinoma, U87MG glioblastoma, T24 bladder cancer and A549 lung carcinoma cells. They revealed a different fluorescence kinetics and dose-response curves for the different types of 5-ALA prodrugs. These experiments have allowed us to identify the most promising cancer cell types for phospho- 5-ALA prodrugs. Confocal fluorescence microscopy provided further evidence of fluorescent protoporphyrin IX accumulation and sub-cellular localisation. These findings, together with the low toxicity profile of phosphatase-sensitive prodrugs of 5-ALA and good response to PDT provide solid basis for future translational development in PC3, MCF7 and U87MG cancer types.

Journal ArticleDOI
TL;DR: An imaging phantom and methods are developed to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly and enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.
Abstract: Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

Journal ArticleDOI
TL;DR: Results suggest caution must be exercised when using any fluorescent tracers in the vicinity of metal-centered porphyrins, including catalase and MnTBAP on fluorophores for ROS.
Abstract: Fluorescence spectroscopy and microscopy have been used extensively to monitor biomolecules, especially reactive oxygen species (ROS) and, more recently, reactive sulfide (RSS) species. Nearly all fluorophores are either excited by or emit light between 450 and 550 nm, which is similar to the absorbance of heme proteins and metal-centered porphyrins. Here we examined the effects of catalase (Cat), reduced and oxidized hemoglobin (Hb and metHb), albumin (alb), manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP), iron protoporphyrin IX (hemin), and copper protoporphyrin IX (CuPPIX) on the fluorescence properties of fluorescein. We also examined the effects of catalase and MnTBAP on fluorophores for ROS (dichlorofluorescein, DCF), polysulfides (3',6'-di(O-thiosalicyl)fluorescein, SSP4), and H2S (7-azido-4-methylcoumarin, AzMC) previously activated by H2O2, a mixed polysulfide (H2Sn, n = 1-7) and H2S, respectively. All except albumin concentration dependently inhibited fluorophore fluorescence and absorbed light between 450 and 550 nm, suggesting that the inhibitory effect was physical not catalytic. Catalase inhibition of fluorescein fluorescence was unaffected by sodium azide, dithiothreitol, diamide, tris(2-carboxyethyl)phosphine (TCEP), or iodoacetate, supporting a physical inhibitory mechanism. Catalase and TBAP augmented, then inhibited DCF fluorescence, but only inhibited SSP4 and AzMC fluorescence indicative of a substrate-specific catalytic oxidation of DCF and nonspecific fluorescence inhibition of all three fluorophores. These results suggest caution must be exercised when using any fluorescent tracers in the vicinity of metal-centered porphyrins.

Journal ArticleDOI
TL;DR: Evidence is provided for a synergistic effect of BGP extract in PpIX-PDT both in vitro and in vivo and for the induction of apoptosis in A431 and HeLa cells.
Abstract: Brazilian green propolis (BGP) is noted for its impressive antitumor effects and has been used as a folk medicine in various cultures for many years. It has been demonstrated that BGP could enhance the cytotoxic effect of cytostatic drugs on tumor cells. Photodynamic therapy (PDT) is a therapeutic approach used against malignant cells. To assess the synergistic effect of BGP extract on protoporphyrin IX (PpIX)-mediated photocytotoxicity, MTT assays were performed using A431 and HeLa cells. TUNEL assay and Annexin V-FITC/PI staining were performed to confirm the induction of apoptosis. Western blotting analysis was performed to examine the pro-apoptotic proteins, anti-apoptotic proteins and inflammation related proteins in A431 cells. Intracellular accumulation of PpIX was examined by flow cytometry. The synergistic effect of BGP extract in PpIX-PDT was also evaluated with a xenograft model. Our findings reveal that BGP extract increased PpIX-mediated photocytotoxicity in A431 and HeLa cells. PpIX-PDT with BGP extract treatment resulted in a decrease in Bcl-xL and an increase in NOXA, Bax and caspase-3 cleavage. The protein expression levels of p-IKKα/β, NF-κB and COX-2 were upregulated by PpIX-PDT but significantly attenuated when in combination with BGP extract. BGP extract was also found to significantly enhance the intracellular accumulation of PpIX in A431 cells. BGP extract increased PpIX-mediated photocytotoxicity in a xenograft model as well. Our findings provide evidence for a synergistic effect of BGP extract in PpIX-PDT both in vitro and in vivo.

Journal ArticleDOI
TL;DR: It is demonstrated that nicarbazin feeding down-regulated ALAS1 and reduced protoporphyrin IX (PP IX) in both shell gland and eggshell, indicating the role of nicarbAZin in inhibiting the synthesis of PP IX.
Abstract: Shell colour is an important trait for eggs and an understanding of pigment deposition will assist potential management of egg shell colour loss. We demonstrated that nicarbazin feeding down-regulated ALAS1 and reduced protoporphyrin IX (PP IX) in both shell gland and eggshell, indicating the role of nicarbazin in inhibiting the synthesis of PP IX. Additionally, the expression levels of the genes did not show sequential upregulation in the same order of diurnal time-points (TP) during egg formation. The gene SLC25A38, responsible for transporting glycine from cytoplasm to mitochondria, and the gene ALAS1, encoding rate-limiting enzyme (delta-aminolevulinic acid synthase 1), had higher expression at 15 hr, as compared with 2, 5 and 23.5 hrs postoviposition. Interestingly, ABCB6, a gene encoding an enzyme responsible for transporting coproporphyrinogen III, showed higher expression level at 2 and 5 hrs. However, the expression of CPOX that converts coproporphyrinogen III to protoporphyrinogen III, and ABCG2 that transports PP IX out from mitochondria did not alter. Nevertheless, mitochondrial count per cell did not show consistent change in response to time-points postoviposition and nicarbazin feeding. The information obtained in the study sheds light on how nicarbazin disrupts the synthesis of PP IX.

Journal ArticleDOI
TL;DR: Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment.
Abstract: Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet- and visible-light-emitting, energy-transfer-based upconversion nanoparticles and coencapsulated them inside PLGA-PEG (methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)) nanoparticles with the photosensitizer protoporphyrin IX. Nd3+ has been introduced as a sensitizer in the upconversion nanostructure to allow its excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG (glioblastoma cell line), and mMSCs (murine mesenchymal stem cells). Upon NIR (near infrared)-light excitation, the upconversion nanoparticles emitted UV and VIS light, which consequently activated the generation of reactive-oxygen species (ROS). In addition, after irradiating at 808 nm, the resulting hybrid nanoparticles containing both upconversion nanoparticles and protoporphyrin IX generated 3.4 times more ROS than PLGA-PEG nanoparticles containing just the same dose of protoporphyrin IX. Their photodynamic effect was also assayed on different cell cultures, demonstrating their efficacy in selectively killing treated and irradiated cells. Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment. Whereas free protoporphyrin IX remained located at the outer layer of the skin, nanoparticle-encapsulated protoporphyrin IX was able to penetrate through the epidermal layer slightly into the dermis.

Journal ArticleDOI
Lei-yan He1, Yao-xue Guo1, Ye Deng1, Chun Li1, Chengzi Zuo1, Wen-xing Peng1 
TL;DR: The results revealed that curcumin alleviated INH/RFP-induced liver injury, declined PPIX levels and induced FECH expression in both L-02 cells and mice, and suggest that amelioration of PPIX accumulation might be involved in the protective effect ofCurcumin on INH or RFP- induced liver injury.
Abstract: Combination of isoniazid (INH) and rifampicin (RFP) causes liver injury frequently among tuberculosis patients. However, mechanisms of the hepatotoxicity are not entirely understood. Protoporphyrin IX (PPIX) accumulation, as an endogenous hepatotoxin, resulting from isoniazid and rifampicin co-therapy (INH/RFP) has been reported in PXR-humanized mice. Aminolevulinic acid synthase1 (ALAS1), ferrochelatase (FECH) and breast cancer resistance protein (BCRP) play crucial roles in PPIX synthesis, metabolism and transport, respectively. Herein, this study focused on the role of INH/RFP in these processes. We observed PPIX accumulation in human hepatocytes (L-02) and mouse livers. FECH expression was initially found downregulated both in L-02 cells and mouse livers and expression levels of ALAS1 and BCRP were elevated in L-02 cells after INH/RFP treatment, indicating FECH inhibition and ALAS1 induction might confer a synergistic effect on PPIX accumulation. Additionally, our results revealed that curcumin alleviated INH/RFP-induced liver injury, declined PPIX levels and induced FECH expression in both L-02 cells and mice. In conclusion, our data provide a novel insight in the mechanism of INH/RFP-induced PPIX accumulation and evidence for understanding pathogenesis of INH/RFP-induced liver injury, and suggest that amelioration of PPIX accumulation might be involved in the protective effect of curcumin on INH/RFP-induced liver injury.

Journal ArticleDOI
TL;DR: Fluorescence quenching as a function of the PpIX-Si surface distance showed a decrease in the fluorescence lifetime by almost two orders of magnitude at the closest separation, and the experimental fluorescence lifetimes are explained theoretically by a classical Chance-Prock-Silbey model.

Journal ArticleDOI
TL;DR: It was shown that compounds 9b-c, 11b- c and 13a displayed a characteristic long wavelength absorption peak at 593 nm after 5 h incubation in mice fibrosarcoma S180 cells, which makes it an effective and promising prodrug for PDT.
Abstract: Protoporphyrin IX (PpIX) is used as a photosensitizer in the photodynamic diagnosis (PDD) and photodynamic therapy (PDT) of cancer and is synthesized intracellularly from 5-aminolevulinic acid (5-ALA) precursors. Thirteen novel 5-ALA derivatives were designed and synthesized appropriately with tailored hydrophilicity and lipophilicity. The generation of PpIX was detected and their antitumor activity in vitro and in vivo was also investigated. It was shown that compounds 9b–c, 11b–c and 13a displayed a characteristic long wavelength absorption peak at 593 nm after 5 h incubation in mice fibrosarcoma S180 cells. After being exposed to 600 nm laser light irradiation, these compounds can inhibit cell proliferation in S180 cells in vitro. The growth of S180 cell tumors in Kunming mice was significantly inhibited by these compounds in vivo. Among these compounds, 13a has low dark toxicity and high phototoxicity, which makes it an effective and promising prodrug for PDT.

Journal ArticleDOI
TL;DR: It is demonstrated that perturbations in carotenoid and porphyrin biosynthesis coordinate the expression of their biosynthetic genes to sustain plastid function at optimal levels by regulating their metabolic flux in plants under adverse stress conditions.
Abstract: Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF) and oxyfluorfen (OF). High levels of protoporphyrin IX (Proto IX) accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1, and CHLD as well as FC2 and HO2 were upregulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS, decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS. However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg-porphyrins, but also by up-regulating FC2, HO2, and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1, and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate the expression of their biosynthetic genes to sustain plastid function at optimal levels by regulating their metabolic flux in plants under adverse stress conditions.

Journal ArticleDOI
TL;DR: The human UCH-2 cell line was a very useful in vitro model to study different effects of 5-ALA based PDT and it could be shown that human chordoma cells may be destroyed by 5- ALA/PDT.

Journal ArticleDOI
TL;DR: The results of the present study suggested that PpIX tends not to accumulate in PDT-resistant cells despite active heme synthesis and degradation, and that high levels of GSTO1 expression are associated with increased sensitivity to PDT.
Abstract: Protoporphyrin IX (PpIX) levels are crucial to the antitumor action of photodynamic therapy (PDT). In the present study, the underling molecular mechanisms for the variation in PpIX levels in ovarian cancer cells were investigated. Five ovarian cancer cell lines were subcutaneously grafted onto the backs of nude mice. Once tumors had developed, 5-aminolevulinic acid methyl ester hydrochloride (methyl-ALA) was administered intraperitoneally and the tumor was irradiated twice/week. PpIX levels in the tumor were assayed using high-performance liquid chromatography. Enzymes involved in heme synthesis and degradation were screened using a microarray technique. Expression of the glutathione transferase Omega-1 (GSTO1) gene involved in the conversion of PpIX into heme in cells was quantified using the reverse transcription-quantitative polymerase chain reaction. In HTOA, HRA and DISS cells, PDT resulted in significant tumor shrinkage in comparison with the controls. In MCAS and TOV21G cells, no significant alterations in tumor growth were identified compared with the untreated cells. PpIX levels increased significantly in HTOA, DISS and HRA cells compared with in MCAS and TOV21G cells. A comparison of genetic profiles using PDT-sensitive DISS cells and PDT-resistant MCAS cells indicated that MCAS cells exhibited significantly increased levels of δ-aminolevulinate synthase (a rate-limiting enzyme in heme synthesis), heme oxygenase 2 (an enzyme that degrades heme into biliverdin), and biliverdin reductase B (an enzyme that reduces biliverdin into bilirubin) in comparison with DISS cells. The level of GSTO1 expression in HTOA, HRA and DISS cells was ~2.5-fold that in MCAS and TOV21G cells. Sensitivity to PDT is related to PpIX levels in cells. The results of the present study suggested that PpIX tends not to accumulate in PDT-resistant cells despite active heme synthesis and degradation, and that high levels of GSTO1 expression are associated with increased sensitivity to PDT.