scispace - formally typeset
Search or ask a question

Showing papers on "Protoporphyrin IX published in 2018"


Journal ArticleDOI
TL;DR: The chlorophyll biosynthesis pathway was enhanced by exogenous ALA to improve the tolerance of cucumber under salinity and Ultrastructural observation of mesophyll cell showed that the damages of photosynthetic apparatus under Salinity were fixed.
Abstract: 5-Aminolevulinic acid (ALA) is a common precursor of tetrapyrroles as well as a crucial growth regulator in higher plants. ALA has been proven to be effective in improving photosynthesis and alleviating the adverse effects of various abiotic stresses in higher plants. However, little is known about the mechanism of ALA in ameliorating the photosynthesis of plant under abiotic stress. In this paper, we studied the effects of exogenous ALA on salinity-induced damages of photosynthesis in cucumber (Cucumis sativus L.) seedlings. We found that the morphology (plant height, leave area), light utilization capacity of PS II [qL, Y(II)] and gas exchange capacity (Pn, gs, Ci, and Tr) were significantly retarded under NaCl stress, but these parameters were all recovered by the foliar application of 25 mg L-1 ALA. Besides, salinity caused heme accumulation and up-regulation of gene expression of ferrochelatase (HEMH) with suppression of other genes involved in chlorophyll synthesis pathway. Exogenously application of ALA under salinity down-regulated the heme content and HEMH expression, but increased the gene expression levels of glutamyl-tRNA reductase (HEMA1), Mg-chelatase (CHLH), and protochlorophyllide oxidoreductase (POR). Moreover, the contents of intermediates involved in chlorophyll branch were increased by ALA, including protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX, protochlorophyllide (Pchlide), and chlorophyll (Chl a and Chl b) under salt stress. Ultrastructural observation of mesophyll cell showed that the damages of photosynthetic apparatus under salinity were fixed by ALA. Collectively, the chlorophyll biosynthesis pathway was enhanced by exogenous ALA to improve the tolerance of cucumber under salinity.

115 citations


Journal ArticleDOI
TL;DR: In vivo studies of photodynamic therapy (PDT) efficacy show that the Ppix‐coated SPION nanoclusters lead to a significant reduction in the growth rate of tumors in a syngeneic murine tumor model compared to both free PpIX‐loaded poly(ethylene glycol)‐polycaprolactone micelles, even when injected at 1/8th the dose.
Abstract: The ability to produce nanotherapeutics at large-scale with high drug loading efficiency, high drug loading capacity, high stability, and high potency is critical for clinical translation. However, many nanoparticle-based therapeutics under investigation suffer from complicated synthesis, poor reproducibility, low stability, and high cost. In this work, a simple method for preparing multifunctional nanoparticles is utilized that act as both a contrast agent for magnetic resonance imaging and a photosensitizer for photodynamic therapy for the treatment of cancer. In particular, the photosensitizer protoporphyrin IX (PpIX) is used to solubilize small nanoclusters of superparamagnetic iron oxide nanoparticles (SPIONs) without the use of any additional carrier materials. These nanoclusters are characterized with a high PpIX loading efficiency; a high loading capacity, stable behavior; high potency; and a synthetic approach that is amenable to large-scale production. In vivo studies of photodynamic therapy (PDT) efficacy show that the PpIX-coated SPION nanoclusters lead to a significant reduction in the growth rate of tumors in a syngeneic murine tumor model compared to both free PpIX and PpIX-loaded poly(ethylene glycol)-polycaprolactone micelles, even when injected at 1/8th the dose. These results suggest that the nanoclusters developed in this work can be a promising nanotherapeutic for clinical translation.

79 citations


Journal ArticleDOI
TL;DR: Spectroscopic studies indicate that the Ppix, Pba, and PpIX-DME photosensitizers are covalently conjugated to the polymer chains, which prevents aggregation and thus allows significant singlet oxygen production upon illumination, suggesting that the new hydrogels have potential for applications in photodynamic therapy.

48 citations


Journal ArticleDOI
TL;DR: The conjugation strategy employed here provides a scalable, facile and efficient route to creating nanofibrous materials from natural polymers with a high photosensitizer loading, enabling the use of commercially-available neutral porphyrin photosensiters, such as PPIX, in the design and synthesis of potent anti-infective nanomaterials.
Abstract: Towards the development of anti-infective nanoscale materials employing a photodynamic mechanism of action, we report the synthesis, physical properties (SEM, mechanical strength, water contact angle), spectroscopic characterization (infrared, Raman, DRUV), and evaluation of antibacterial efficacy of porphyrin-conjugated regenerated cellulose nanofibers, termed RC-TETA-PPIX-Zn. Cellulose acetate was electrospun to produce nanofibers, thermally treated to enhance mechanical strength, and finally hydrolyzed to produce regenerated cellulose (RC) nanofibers that possessed a high surface area and nanofibrous structure. Covalent grafting of a protoporphyrin IX (PPIX) photosensitizer using epichlorohydrin/triethylenetetramine (TETA), followed by zinc chelation, afforded RC-TETA-PPIX-Zn. The high surface area afforded by the nanofibers and efficient photosensitizer conjugation led to a very high loading of 412 nmol PPIX/mg material, corresponding to a degree of substitution of 0.1. Antibacterial efficacy was evaluated against Staphylococcus aureus (ATCC-6538) and Escherichia coli (ATCC-8099), with our best results achieving detection limit inactivation (99.999+%) of both bacteria after only 20 min illumination (Xe lamp, λ ≥ 420 nm). No statistically significant loss in antibacterial activity was observed when using nanofibers that had been 'photo-aged' with 5 h of pre-illumination to simulate the effects of photobleaching. Post aPDI, scanning electron microscopy revealed that the bacteria had undergone cell membrane leakage, consistent with oxidative damage caused by photo-generated reactive oxygen species. Taken together, the conjugation strategy employed here provides a scalable, facile and efficient route to creating nanofibrous materials from natural polymers with a high photosensitizer loading, enabling the use of commercially-available neutral porphyrin photosensitizers, such as PPIX, in the design and synthesis of potent anti-infective nanomaterials.

46 citations


Journal ArticleDOI
TL;DR: Tiafenacil is non-selective and is herbicidal to both dicots and monocots, such as the weeds velvetleaf, amaranth, and barnyardgrass as well as the crops soybean, rapeseed, rice, and maize.

44 citations


Journal ArticleDOI
TL;DR: Protoporphyrin IX (PpIX) is an endogenous fluorescent molecule that selectively accumulates in cancer cells treated with the heme precursor 5-aminolevulinic acid (5-ALA), and inhibition of oncogenic Ras/MEK significantly enhances PpIX accumulation in vitro and in vivo in a cancer-specific manner.
Abstract: Protoporphyrin IX (PpIX) is an endogenous fluorescent molecule that selectively accumulates in cancer cells treated with the heme precursor 5-aminolevulinic acid (5-ALA). This cancer-specific accumulation of PpIX is used to distinguish tumor from normal tissues in fluorescence-guided surgery (FGS) and to destroy cancer cells by photodynamic therapy (PDT). In this study, we demonstrate that oncogenic Ras/mitogen-activated protein kinase kinase (MEK) pathway can modulate PpIX accumulation in cancer cells. Methods: To identify Ras downstream elements involved in PpIX accumulation, chemical inhibitors were used. To demonstrate the increase of PpIX accumulation by MEK inhibition, different human normal and cancer cell lines, BALB/c mice bearing mammary 4T1 tumors and athymic nude mice bearing human tumors were used. To identify the mechanisms of PpIX regulation by MEK, biochemical and molecular biological experiments were conducted. Results: Inhibition of one of the Ras downstream elements, MEK, promoted PpIX accumulation in cancer cells treated with 5-ALA, while inhibitors against other Ras downstream elements did not. Increased PpIX accumulation with MEK inhibition was observed in different types of human cancer cell lines, but not in normal cell lines. We identified two independent cellular mechanisms that underlie this effect in cancer cells. MEK inhibition reduced PpIX efflux from cancer cells by decreasing the expression level of ATP binding cassette subfamily B member 1 (ABCB1) transporter. In addition, the activity of ferrochelatase (FECH), the enzyme responsible for converting PpIX to heme, was reduced by MEK inhibition. Finally, we found that in vivo treatment with MEK inhibitors increased PpIX accumulation (2.2- to 2.4-fold) within mammary 4T1 tumors in BALB/c mice injected with 5-ALA without any change in normal organs. Similar results were also observed in a human tumor xenograft model. Conclusion: Our study demonstrates that inhibition of oncogenic Ras/MEK significantly enhances PpIX accumulation in vitro and in vivo in a cancer-specific manner. Thus, suppressing the Ras/MEK pathway may be a viable strategy to selectively intensify PpIX fluorescence in cancer cells and improve its clinical applications in FGS.

40 citations


Journal ArticleDOI
TL;DR: The results demonstrated that the novel PX@OP@RVG multifunctional nanomedicine has a dual-target treatment capability for AD and can traverse the blood-brain barrier, indicating the potential for the effective treatment of AD.
Abstract: Alzheimer’s disease (AD) has become one of the most serious societal problems globally, with no effective treatments. Parenchymal accumulation of amyloid beta (Aβ) plaques and the formation of neurofibrillary tangles are the hallmarks of AD. Their possible interactions and synergistic effects in AD have been gradually elucidated. The failure of many clinical trials suggests that it is difficult to treat AD with a focus on a single target. Instead, multiple targets may be an important direction for AD drug research. In this study, we used protoporphyrin IX (PX)-modified oxidized mesoporous carbon nanospheres (OMCN) (PX@OMCN@PEG(OP)@RVGs) as a novel AD multifunctional nanodrug having multiple targets. The nanodrug efficiently inhibits tau phosphorylation. In addition, the use of PX with focused ultrasound triggered the production of reactive oxygen species that significantly inhibited Aβ aggregation. Both approaches notably increased the cognitive level of APP/PS1 transgenic (Tg) mice and ultimately achieve...

33 citations


Journal ArticleDOI
TL;DR: Though the reusability of the as-fabricated materials needs to be further enhanced, this work provides a potent strategy for efficient photodynamic inactivation against Gram negative bacteria using neutral photosensitizers.
Abstract: Herein, protoporphyrin IX (PPIX) was covalently grafted onto a bacterial cellulose (BC) surface via three diamine spacer arms with different chain lengths. The obtained materials were characterized by spectroscopic (infrared, Raman, UV–Vis diffuse reflectance, electron paramagnetic and fluorescence) and physical (elemental, gravimetric) methods. Antibacterial efficacy was evaluated against Staphylococcus aureus and Escherichia coli, and the PPIX supported BC surface exhibited specific antibacterial photodynamic inactivation against E. coli. The 1,2-bis(2-aminoethoxy)ethane aminated BC immobilized the maximal amount of PPIX, and the resulting photosensitive surface achieved a 99.999% (1st cycle) inactivation efficiency against E. coli, but relatively low efficiency against S. aureus. A mechanism of Gram negative bacterial inactivation was proposed as the positively charged PPIX-conjugated BC surface coupled with sufficient 1O2 generation. Though the reusability of the as-fabricated materials needs to be further enhanced, this work provides a potent strategy for efficient photodynamic inactivation against Gram negative bacteria using neutral photosensitizers.

29 citations


Journal ArticleDOI
TL;DR: Serial 5FU and PDT improve AK clearance by at least two mechanisms, enhanced photosensitizer accumulation and p53 induction and p 53 induction.
Abstract: Purpose: Actinic keratoses (AK) are precancerous lesions that can progress to squamous cell carcinoma. Photodynamic therapy (PDT) and topical 5-fluorouracil (5FU) are commonly used agents for AK. Empirical reports suggest that combining them can improve the therapeutic response. However, the optimal combined regimen was not clear in terms of proper sequence, timing, and mechanism. This clinical study explored mechanisms of action for neoadjuvantal 5FU and PDT for treatment of AK.Patients and Methods: A bilaterally controlled trial (17 patients) was performed. One side of the body (face, scalp, forearms) received 5FU pretreatment for 6 days, whereas the other side served as no-pretreatment control. Methylaminolevulinate cream was applied to both sides for 3 hours, and protoporphyrin IX (PpIX) levels were measured by noninvasive fluorimetry and skin biopsy. After red light illumination, lesion clearance was assessed at 3, 6, 9, and 12 months after PDT.Results: PpIX levels were increased 2- to 3-fold in 5FU-pretreated lesions versus controls. Altered expression of heme-synthetic enzymes (coproporphyrinogen oxidase and ferrochelatase) and induction of p53 were observed, probably accounting for increased PpIX and subsequent cancer cell death. Relative clearance rates after PDT with or without 5FU pretreatment were 75% versus 45% at 3 months, and 67% versus 39% at 6 months, respectively; these differences were statistically significant.Conclusions: Serial 5FU and PDT improve AK clearance by at least two mechanisms, enhanced photosensitizer accumulation and p53 induction. Because 5FU and PDT are FDA-approved modalities, the combined regimen can be readily employed in clinical practice to reduce AK burden and reduce SCC risk. Clin Cancer Res; 24(13); 3026-35. ©2018 AACR.

24 citations


Journal ArticleDOI
TL;DR: The efficacy of ALA-PDT against CCC with chemoresistance in vitro was revealed and was correlated with the intracellular PpIX accumulation.

20 citations


Journal ArticleDOI
TL;DR: It is shown that Ga(III)-protoporphyrin IX chloride (Ga-PpIX), a fluorescent hemin analog with previously undisclosed photosensitizing properties, can be taken up within seconds by Staphylococcus aureus including multidrug-resistant strains such as MRSA.
Abstract: Antimicrobial photodynamic therapy (aPDT) is a promising method for the topical treatment of drug-resistant staphylococcal infections and can be further improved by identifying mechanisms that increase the specificity of photosensitizer uptake by bacteria. Here we show that Ga(III)-protoporphyrin IX chloride (Ga-PpIX), a fluorescent hemin analog with previously undisclosed photosensitizing properties, can be taken up within seconds by Staphylococcus aureus including multidrug-resistant strains such as MRSA. The uptake of Ga-PpIX by staphylococci is likely diffusion-limited and is attributed to the expression of high-affinity cell-surface hemin receptors (CSHRs), namely iron-regulated surface determinant (Isd) proteins. A structure-activity study reveals the ionic character of both the heme center and propionyl groups to be important for uptake specificity. Ga-PpIX was evaluated as a photosensitizer against S. aureus and several clinical isolates of MRSA using a visible light source, with antimicrobial activity at 0.03 μM with 10 s of irradiation by a 405 nm diode array (1.4 J/cm2); antimicrobial activity could also be achieved within minutes using a compact fluorescent lightbulb. GaPpIX was not only many times more potent than PpIX, a standard photosensitizer featured in clinical aPDI, but also demonstrated low cytotoxicity against HEK293 cells and human keratinocytes. Ga-PpIX uptake was screened against a diverse panel of bacterial pathogens using a fluorescence-based imaging assay, which revealed rapid uptake by several Gram-positive species known to express CSHRs, suggesting future candidates for targeted aPDT.

Journal ArticleDOI
Fan Yuan1, Jiang-Lan Li1, Han Cheng1, Xuan Zeng1, Xian-Zheng Zhang1 
TL;DR: A redox-responsive nanoplatform could release the theranostic agent under a glutathione stimulus, produce fluorescence recovery for tumor-specific fluorescence imaging and provide tumor-enhanced photodynamic therapy.
Abstract: In order to obtain an optimal therapeutic effect with minimal systemic toxicity, a redox-responsive mesoporous silica nanoparticle (MSN)-based platform modified with protoporphyrin IX (PpIX)-multifunctional peptides was synthesized as an intelligent theranostic agent carrier. This redox-responsive nanoplatform could release the theranostic agent under a glutathione stimulus, produce fluorescence recovery for tumor-specific fluorescence imaging and provide tumor-enhanced photodynamic therapy.

Journal ArticleDOI
TL;DR: This investigation presents the evaluation of naturally occurring pigments, namely Zn(II)PPIX, protoporphyrin IX (PPIX) and heme in nitrite-free dry fermented sausages in function of time, meat source (pork, horsemeat and a combination of both meat sources) and pH condition.

Journal ArticleDOI
TL;DR: Results suggest that PDT with EDTA-2Na and ALA is a potential novel treatment option for PA-infected wounds.

Journal ArticleDOI
TL;DR: 5-ALA-SQ presents a novel nano-delivery platform with great potential for the systemic administration of 5- ALA, a natural precursor of cholesterol, which has found clinical use for photodiagnosis and photodynamic therapy of several cancers.
Abstract: Protoporphyrin IX (PpIX) as natural photosensitizer derived from administration of 5-aminolevulinic acid (5-ALA) has found clinical use for photodiagnosis and photodynamic therapy of several cancers. However, broader use of 5-ALA in oncology is hampered by its charge and polarity that result in its reduced capacity for passing biological barriers and reaching the tumor tissue. Advanced drug delivery platforms are needed to improve the biodistribution of 5-ALA. Here, we report a new approach for the delivery of 5-ALA. Squalenoylation strategy was used to covalently conjugate 5-ALA to squalene, a natural precursor of cholesterol. 5-ALA-SQ nanoassemblies were formed by self-assembly in water. The nanoassemblies were monodisperse with average size of 70 nm, polydispersity index of 0.12, and ζ-potential of + 36 mV. They showed good stability over several weeks. The drug loading of 5-ALA was very high at 26%. In human prostate cancer cells PC3 and human glioblastoma cells U87MG, PpIX production was monitored in vitro upon the incubation with nanoassemblies. They were more efficient in generating PpIX-induced fluorescence in cancer cells compared to 5-ALA-Hex at 1.0 to 3.3 mM at short and long incubation times. Compared to 5-ALA, they showed superior fluorescence performance at 4 h which was diminished at 24 h. 5-ALA-SQ presents a novel nano-delivery platform with great potential for the systemic administration of 5-ALA.

Journal ArticleDOI
TL;DR: It is demonstrated that polyamine moieties on macrocycles can enhance PDT efficacy by targeting mitochondria, and localizes mainly in the mitochondria of both HT29 and HEP3B cells.
Abstract: Two polyamine derivatives of protoporphyrin IX (PPIX) were tested as photodynamic therapy (PDT) agents in HT29 colorectal cancer and HEP3B liver cancer cell lines These molecules exhibit excellent singlet oxygen quantum yields and show strong in vitro PDT efficacy after 660 nm laser irradiation whereas exogenous PPIX itself exhibits much weaker PDT effects Confocal imaging studies reveal that a protoporphyrin derivative with eight amine moieties, has excellent water-solubility, and localizes mainly in the mitochondria of both HT29 and HEP3B cells, whereas the cellular distribution of a protoporphyrin derivative with four amine moieties is not as specific This work demonstrates that polyamine moieties on macrocycles can enhance PDT efficacy by targeting mitochondria

Journal ArticleDOI
TL;DR: Medulloblastoma cell lines accumulate PPIX after application of 5-ALA and become sensitive to PDT, associated with low ferrochelatase expression and activity and associated with lower photosensitivity of the MB cell lines.
Abstract: Summary Background Medulloblastoma (MB) is the most common malignant primary brain tumor of childhood. High risk patients still have a poor outcome, and especially young patients suffer from standard therapy induced sequelae. Therefore, other therapeutic options need to be explored. In glioblastoma (GBM), application of 5-aminolaevulinic acid (5-ALA) results in selective accumulation of protoporphyrin IX (PPIX) in the tumor cells, which can be exploited during fluorescence-guided surgery to increase the extent of resection or for photodynamic therapy (PDT) induced phototoxicity. It is not entirely clear, whether MB cells accumulate PPIX and are sensitive to PDT. Methods Human MYC-amplified (Med8A and D283) and non-amplified (UW228–2 and ONS76) MB cell lines were incubated for 2, 4 or 6 h with increasing doses (0–100 μg/ml) of 5-ALA, and PPIX accumulation was determined by flow cytometry. To assess sensitivity to 5-ALA/PDT, cells were incubated with 5-ALA and subsequently exposed to laser light of 635 nm wavelength (18.75 J/cm2). After an additional 24 h culture period, viability of cells was quantified using the WST-1 assay. Expression of ferrochelatase was detected by reverse transcription and quantitative polymerase chain reaction. Ferrochelatase activity was quantified by measuring the enzymatic conversion of PPIX to zinc-protoporphyrin. Expression of the ABCG2 transporter protein CD338 was detected by flow cytometry. Results All MB cell lines showed a time- and dose-dependent accumulation of PPIX after exposure to exogenous 5-ALA and became sensitive to 5-ALA/PDT-induced phototoxicity. PPIX accumulation was reduced compared to U373 GBM cells at shorter incubation periods and limiting 5-ALA doses. Moreover, not all MB cells became PPIX positive and overall phototoxicity was lower in the MB cell lines. Notably, the MYC-amplified MB cells demonstrated a more pronounced photosensitivity compared to their non-amplified counterparts. There was no difference in expression of ferrochelatase, but enzymatic activity appeared to be reduced in the MB cells compared to U373 GBM cells, whereas CD338 was expressed on the MB cells only. Conclusion Medulloblastoma cell lines accumulate PPIX after application of 5-ALA and become sensitive to PDT, associated with low ferrochelatase expression and activity. Photosensitivity is more pronounced in MYC-amplified cell lines. In contrast to GBM cells, however, PPIX accumulation appears to be reduced, restricted to a subset of cells and associated with lower photosensitivity of the MB cell lines, possibly due to expression of the ABCG2 transporter protein CD338 on MB cells.

Journal ArticleDOI
TL;DR: A new system which combines metabolic monitoring using electrochemical microsensors with photodynamic therapy on-chip for the first time and its efficacy and recovery effects are determined, underlines the high relevance of continuous monitoring.
Abstract: We introduce a new system which combines metabolic monitoring using electrochemical microsensors with photodynamic therapy on-chip for the first time. Oxygen consumption of T-47D breast cancer cells was measured during therapy with protoporphyrin IX. We determined the efficacy of the therapy and revealed its recovery effects, which underlines the high relevance of continuous monitoring.

Journal ArticleDOI
TL;DR: HemJ was conditionally complemented by another PPO, HemG from Escherichia coli, and the hypothesis that HemJ is functionally coupled with CPO and that this coupling is disrupted after replacement of HemJ by HemG is supported.


Journal ArticleDOI
TL;DR: Four currently-marketed drugs—the antibiotic ciprofloxacin, the iron chelator deferiprone, the antimetabolite 5-FU, and the xanthine oxidase inhibitor febuxostat—that all have evidence of ability to both increase 5-ALA mediated intraoperative glioblastoma demarcation and photodynamic cytotoxicity of in situ gliobeasts cells are used.
Abstract: The CAALA (Complex Augmentation of ALA) regimen was developed with the goal of redressing some of the weaknesses of 5-aminolevulinic acid (5-ALA) use in glioblastoma treatment as it now stands. 5-ALA is approved for use prior to glioblastoma surgery to better demarcate tumor from brain tissue. 5-ALA is also used in intraoperative photodynamic treatment of glioblastoma by virtue of uptake of 5-ALA and its preferential conversion to protoporphyrin IX in glioblastoma cells. Protoporphyrin IX becomes cytotoxic after exposure to 410 nm or 635 nm light. CAALA uses four currently-marketed drugs-the antibiotic ciprofloxacin, the iron chelator deferiprone, the antimetabolite 5-FU, and the xanthine oxidase inhibitor febuxostat-that all have evidence of ability to both increase 5-ALA mediated intraoperative glioblastoma demarcation and photodynamic cytotoxicity of in situ glioblastoma cells. Data from testing the full CAALA on living minipigs xenotransplanted with human glioblastoma cells will determine safety and potential for benefit in advancing CAALA to a clinical trial.

Journal ArticleDOI
TL;DR: A 4-aminoquinoline-based molecular tweezer was developed as a synthetic receptor for protoporphyrin IX and iron(iii) protoporalin IX, and applied as a supramolecular photosensitizer.
Abstract: We report on the design and synthesis of a new type of 4-aminoquinoline-based molecular tweezer 1 which forms a stable host–guest complex with protoporphyrin IX (PPIX) via multiple interactions in a DMSO and HEPES buffer (pH 74) mixed solvent system The binding constant for the 1 : 1 complex (K11) between 1 and PPIX is determined to be 4 × 106 M−1 Furthermore, 1 also forms a more stable complex with iron(III) protoporphyrin IX (Fe(III)PPIX), the K11 value for which is one order of magnitude greater than that for PPIX, indicating that 1 could be used as a recognition unit of a synthetic heme sensor On the other hand, the formation of the stable PPIX·1 complex (supramolecular photosensitizer) prompted us to apply it to photodynamic therapy (PDT) Cell staining experiments using the supramolecular photosensitizer and evaluations of its photocytotoxicity indicate that the PDT activity of PPIX is improved as the result of the formation of a complex with 1

Journal ArticleDOI
TL;DR: Attachment of the photosensitizer, a protoporphyrin IX (PpIX) amino derivative, on cotton-g-polyMAA was realized successfully by a classical peptidic covalent link.
Abstract: We report the preparation of a cellulose fabric bearing derivative protoporphyrin IX units covalently attached to the cellulose backbone of a fabric. Ce(IV) redox system radical polymerization was used to polymerize methacrylic acid (MAA) onto a cotton material and to obtain cotton-g-polyMAA. Attachment of the photosensitizer, a protoporphyrin IX (PpIX) amino derivative, on cotton-g-polyMAA was realized successfully by a classical peptidic covalent link. The modified surfaces were characterized by ATR-FTIR, DRUV, TGA, and SEM methods. Under visible light irradiation, protoporphyrinic cotton showed antibacterial activity against Staphyloccoccus aureus. This concept is very promising in the field of bacterial decontamination (sterile area, hospital equipment, etc.).

Journal ArticleDOI
TL;DR: Dendritic derivatives are capable of efficiently delivering both ALA and HPO, which act synergistically to amplify in vitro PpIX levels and enhance PDT efficacy.

Journal ArticleDOI
TL;DR: Novel iron chelating agents are being investigated to enhance the effectiveness and extend the applications of this treatment modality, as limiting free iron increases the accumulation of PpIX available for light activation and thus cell kill.
Abstract: The authors wish to thank Professor Hider (King’s College London, UK) for synthesising CP94. The financial support of the Medical Research Council (MRC, UK) and Killing Cancer (UK) is very gratefully acknowledged.

Journal ArticleDOI
TL;DR: It is found that protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid applied in photodynamic therapy of cancer, stabilizes TAp73 and activates TAp 73-dependent apoptosis in cancer cells lacking p53.
Abstract: The p73 protein is a tumor suppressor that shares structural and functional similarity with p53. p73 is expressed in two major isoforms; the TA isoform that interacts with p53 pathway, thus acting as tumor suppressor and the N-terminal truncated ΔN isoform that inhibits TAp73 and p53 and thus, acts as an oncogene. By employing a drug repurposing approach, we found that protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid applied in photodynamic therapy of cancer, stabilizes TAp73 and activates TAp73-dependent apoptosis in cancer cells lacking p53. The mechanism of TAp73 activation is via disruption of TAp73/MDM2 and TAp73/MDMX interactions and inhibition of TAp73 degradation by ubiquitin ligase Itch. Finally, PpIX showed potent antitumor effect and inhibited the growth of xenograft human tumors in mice. Our findings may in future contribute to the successful repurposing of PpIX into clinical practice.

Journal ArticleDOI
TL;DR: The results obtained in this study suggest that the combination of two or more PSs may be a promising strategy to improve the efficacy of conventional photodynamic therapy as well as to reduce dark toxicity.
Abstract: Photodynamic therapy (PDT) has developed into a new clinical and non-invasive treatment for cancer over the past 30 years By the combination of three non-toxic partners, ie a photosensitizer (PS), molecular oxygen (O2) and light, cytotoxic reactive oxygen species (ROS) are locally produced leading to irreversible vascular and cellular damage In the present study, we report for the first time that the combination of two photosensitizers (2 PSs: Protoporphyrin IX, PpIX and Hypericin, Hy) loaded in the same lipid nanocapsules (LNCs) leads to enhanced photodynamic therapy efficiency when compared with previously reported systems The 2 PS-loaded LNCs are shown to increase the in vitro phototoxicity at the nanomolar range (IC50 = 274 and 278 nM on HeLa and MDA-MB-231 cell lines, respectively), whereas the corresponding single PS-loaded LNCs at the same concentration exhibit a phototoxicity two times lower Intracellular localization in HeLa cells indicates a subcellular asymmetry of PpIX and Hy, in the plasma, ER membranes and round internal structures The biodistribution of LNCs was studied upon different routes of injection into Swiss nude mice; based on the obtained data, LNCs were injected intratumorally and used to slow the growth of xenograft tumors in mice The results obtained in this study suggest that the combination of two or more PSs may be a promising strategy to improve the efficacy of conventional photodynamic therapy as well as to reduce dark toxicity

Journal ArticleDOI
TL;DR: ALA selectively accumulates in the mitochondria and PpIX synthesized from ALA reacts with carbon-ion beam to produce ROS that exert antitumor activity that shows a significant enhancement of its cytotoxic activity.
Abstract: Background/aim Carbon-ion beam is one of the most advanced radiations used for cancer treatment. However, there are tumors that are difficult to suppress with carbon-ion beam alone, thus necessitating development of drugs that can enhance its therapeutic effect. In this regard, the radiosensitizing effect of 5-aminolevulinic acid (ALA) and protoporphyrin IX (PpIX), that is a metabolic intermediate of ALA, on carbon-ion beam was investigated. Materials and methods Radiosensitizing activity, mitochondrial ROS and DNA double-strand break production of ALA and PpIX were evaluated by irradiation with 1.0 or 1.5-Gy carbon-ion beam to mouse mammary EMT6 tumor cells. Results Combination of carbon-ion beam and ALA or PpIX showed a significant enhancement of its cytotoxic activity through a significant increase in ROS production in mitochondria. Furthermore, the combined activity of carbon-ion beam and ALA resulted in a significant increase in DNA double-strand breakage. Conclusion ALA selectively accumulates in the mitochondria and PpIX synthesized from ALA reacts with carbon-ion beam to produce ROS that exert antitumor activity.

Journal ArticleDOI
TL;DR: Analysis of necrotic tumor tissue and gliosarcoma, one rare type of glioma appearing nonfluorescent during FGS, as case examples with false-negative-fluorescence diagnosis revealed the absence of significant amounts of PpIX, indicating an impairment of PnIX formation.
Abstract: Fluorescence-guided surgery (FGS) has been established as a powerful technique for glioblastoma resection After oral application of the prodrug 5-aminolevulinic acid (5-ALA), protoporphyrin IX (PpIX) is formed as an intermediate of the heme-biosynthesis cascade and accumulates within the tumor By intraoperative fluorescence microscopy, the specific PpIX fluorescence can be used to differentiate the tumor from healthy brain tissue To investigate possible limitations of fluorescence diagnosis, the complementary use of molecular and elemental mass-spectrometry imaging (MSI) is presented Matrix-assisted laser-desorption–ionization mass spectrometry (MALDI-MS) is used to examine the distribution of PpIX and heme b in human brain tumors MALDI-MS/MS imaging is performed to validate MS data and improve the signal-to-noise ratio (S/N) Comparing the imaging results with histological evaluation, increased PpIX accumulation in areas of high tumor-cell density is observed Heme b accumulation are only found in a

Journal ArticleDOI
TL;DR: In vitro side-effects due to a possible intrinsic photosensitivity of gastric mucosa or to a photosensitization by the PS released from the bacterium itself are evaluated and indicate that the evaluated photo-treatments do not cause side effects even with the sensitization due to PPIX released by the bacteria.
Abstract: Since many years it has been acknowledged that some bacterial species, among which H. pylori, P. aeruginosa, P. acnes accumulate endogenous photosensitizers (PS) in the form of porphyrins. This makes antibacterial photodynamic therapy (PDT) easier to perform due to the possible avoidance of external PS. In this study, we focus on gastric infections associated with the presence of Helicobacter pylori (H. pylori), known to accumulate and release both protoporphyrin IX (PPIX) and coproporphyrins. PDT versus H. pylori can be carried out by modified endoscopes or by new ingestible luminous devices under development. In both cases of in vitro and in vivo applications, either for therapy (PDT) or diagnosis, scientific literature lacks studies on the possible side-effects of light treatments on the surrounding tissues. To this aim we evaluated in vitro side-effects due to a possible intrinsic photosensitivity of gastric mucosa or to a photosensitization by the PS released from the bacterium itself. Photo-toxicity studies were conducted on the AGS cell line (ATCC® CRL-1739™), commonly used as a model for the stomach mucosa tissue, considering PPIX as the photosensitizing agent. After first evaluations of PPIX dark toxicity, its uptake and accumulation sites, photo-toxicity tests were conducted using a LED light source peaked at 400 nm, by varying both PPIX concentration (50 nM – 2 μM) and light dose in the range 0.6–13 J/cm2, representing different treatment procedures found in literature. The oxidative stress consequent to irradiation was investigated both in terms of ROS production and assessment of the activity of enzymes involved in ROS-related biological mechanisms. A significant phototoxic effect was found only for PPIX concentration > 100 nM for all tested light doses. This indicates that the evaluated photo-treatments do not cause side effects even with the sensitization due to PPIX released by the bacteria.