scispace - formally typeset
Search or ask a question
Topic

Protoporphyrin IX

About: Protoporphyrin IX is a research topic. Over the lifetime, 2250 publications have been published within this topic receiving 65544 citations. The topic is also known as: PpIX.


Papers
More filters
Journal ArticleDOI
TL;DR: The survival curves were exponentially decaying with the irradiation time and there was a direct proportionality between the inverse slope of the survival curves and the intensity of protoporphyrin fluorescence from the lipidlike compartm ents.
Abstract: The uptake of protoporphyrin IX by Propionibacterium acnes in suspension has been studied by fluorescence spectroscopy. Protoporphyrin, after it was injected into a cell suspension, was firstly bound to receptors on the cell surface and in this state protoporphyrin was non-fluorescent. Subsequently, probably as a result of lateral diffusion in the cell wall, these protoporphyrin-receptor complexes formed dimers. The final step in the overall uptake process of protoporphyrin by the cells from the surroundings consisted in a jump of such dimers from waterlike to lipidlike compartments in the cell membrane where protoporphyrin became fluorescent. The lipidlike compartments in the cells had a limited binding capacity of protoporphyrin. The fraction of surviving cells versus light dose has also been studied for varying amounts of protoporphyrin added to the cell suspensions. The survival curves were exponentially decaying with the irradiation time and there was a direct proportionality between the inverse slope of the survival curves and the intensity of protoporphyrin fluorescence form the lipidlike compartments. The relevance of these results to the therapy of Acne vulgaris is also discussed.

40 citations

Journal ArticleDOI
TL;DR: The results obtained for glioblastoma cells are encouraging to develop PDT to an additional therapeutic option for the treatment of tumour margins in patients who underwent fluorescence-guided resection of high grade malignant glioma after 5-ALA administration.
Abstract: A promising clinical application of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PP IX) is fluorescence detection and photodynamic treatment of residual tumour tissue during surgical resection of high grade malignant glioma. U373 MG human glioblastoma cells were used as a model system to study the relation between intracellular location and photodynamic efficacy of 5-ALA-induced PP IX in more detail. Therefore, ultra-sensitive fluorescence microscopy, using either optical excitation of whole cells or selective excitation of the plasma membrane by an evanescent electromagnetic field, was combined with quantitative measurements of intracellular porphyrin amount and phototoxicity. Glioblastoma cells accumulated PP IX to a moderate extent as compared to T47D breast cancer cells (high accumulation) or OV2774 ovarian cancer cells (low accumulation). Although photodynamic inactivation of the different cell lines (decreasing in the order T47D > U373 MG > OV2774) seemed to be directly related to PP IX accumulation, examination of the data in more detail revealed that photodynamic efficacy per photosensitizer molecule (PE) was about two times higher in glioblastoma and ovarian cancer cells as compared to breast cancer cells. The different photodynamic efficacy of PP IX was related to the different intracellular location. In contrast to breast cancer cells where PP IXfluorescence was localized in small granules, PP IXfluorescence in glioblastoma cells and ovarian cancer cells originated mainly from cellular membranes. Thus, the intracellular location of PP IX in a predominantly lipophilic environment, characterized by a comparably high photostability (probed by photobleaching and photoproduct formation) and a lower degree of porphyrin aggregation (probed previously by fluorescence decay kinetics), seems to be the key factor for high photodynamic efficacy of 5-ALA-induced PP IX. In the case of OV2774 ovarian cancer cells, however, a low PP IX accumulation limited cell inactivation upon irradiation, whereas the results obtained for glioblastoma cells are encouraging to develop PDT to an additional therapeutic option for the treatment of tumour margins in patients who underwent fluorescence-guided resection of high grade malignant glioma after 5-ALA administration.

40 citations

Journal ArticleDOI
TL;DR: It is anticipated that a new nanoconjugate composed of Protoporphyrin IX and gold nanoparticles can act as an efficient sonoluminescence agent and could be introduced as a novel sonosensitizer for sonodynamic therapy.

40 citations

Journal ArticleDOI
TL;DR: The data suggest that PpIX-SDT suppress the proliferation of SAS cells via arresting cell cycle at G2/M phase and activating the extrinsic Fas-mediated membrane receptor pathway to induce apoptosis, which is regulated by p53.
Abstract: Sonodynamic therapy (SDT) is an innovative modality for cancer treatment. But the biological effect of SDT on oral squamous cell carcinoma has not been studied. Our previous study has shown that endo-Protoporphyrin IX based SDT (ALA-SDT) could induce apoptosis in human tongue squamous carcinoma SAS cells through mitochondrial pathway. Herein, we investigated the effect of exo- Protoporphyrin based SDT (PpIX-SDT) on SAS cells in vitro and in vivo. We demonstrated that PpIX-SDT increased the ratio of cells in the G2/M phase and induced 3-4 times more cell apoptosis compared to sonocation alone. PpIX-SDT caused cell membrane damage prior to mitochondria damage and upregulated the expression of Fas and Fas L, while the effect was suppressed if cells were pre-treated with p53 inhibitor. Additionally, we examined the SDT-induced cell apoptosis in two cell lines with different p53 status. The increases of p53 expression and apoptosis rate in wild-type p53 SAS cells were found in the SDT group, while p53-mutated HSC-3 cells did not show such increase. Our data suggest that PpIX-SDT suppress the proliferation of SAS cells via arresting cell cycle at G2/M phase and activating the extrinsic Fas-mediated membrane receptor pathway to induce apoptosis, which is regulated by p53.

40 citations

Journal ArticleDOI
TL;DR: It is demonstrated that pre-steady state human ferrochelatase (R115L) exhibits a stoichiometric burst of product formation and substrate consumption, consistent with a rate-determining step following metal ion chelation.
Abstract: The final step in heme biosynthesis, insertion of ferrous iron into protoporphyrin IX, is catalyzed by protoporphyrin IX ferrochelatase (EC 4.99.1.1). We demonstrate that pre-steady state human ferrochelatase (R115L) exhibits a stoichiometric burst of product formation and substrate consumption, consistent with a rate-determining step following metal ion chelation. Detailed analysis shows that chelation requires at least two steps, rapid binding followed by a slower (k approximately 1 s-1) irreversible step, provisionally assigned to metal ion chelation. Comparison with steady state data reveals that the rate-determining step in the overall reaction, conversion of free porphyrin to free metalloporphyrin, occurs after chelation and is most probably product release. We have measured rate constants for significant steps on the enzyme and demonstrate that metal ion chelation, with a rate constant of 0.96 s-1, is approximately 10 times faster than the rate-determining step in the steady state (kcat = 0.1 s-1). The effect of an additional E343D mutation is apparent at multiple stages in the reaction cycle with a 7-fold decrease in kcat and a 3-fold decrease in kchel. This conservative mutation primarily affects events occurring after metal ion chelation. Further evaluation of structure-function data on site-directed mutants will therefore require both steady state and pre-steady state approaches.

40 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
77% related
Cell growth
104.2K papers, 3.7M citations
77% related
Kinase
65.8K papers, 3.5M citations
76% related
Programmed cell death
60.5K papers, 3.8M citations
76% related
DNA
107.1K papers, 4.7M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022132
202157
202061
201958
201858