scispace - formally typeset
Search or ask a question
Topic

Protoporphyrin IX

About: Protoporphyrin IX is a research topic. Over the lifetime, 2250 publications have been published within this topic receiving 65544 citations. The topic is also known as: PpIX.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigation into the consequences of selective reduction of the plastidic ferrochelatase activity for protoporphyrin IX channeling in chloroplasts and for interactions between plasts and mitochondrial heme synthesis found reduced activity was reduced only in plastids but not in mitochondria of transgenic plants.
Abstract: Summary Protoporphyrin IX is the last common intermediate of tetrapyrrole biosynthesis. The chelation of a Mg2+ ion by magnesium chelatase and of a ferrous ion by ferrochelatase directs protoporphyrin IX towards the formation of chlorophyll and heme, respectively. A full length cDNA clone encoding a ferrochelatase was identified from a Nicotiana tabacum cDNA library. The encoded protein consists of 497 amino acid residues with a molecular weight of 55.4 kDa. In vitro import of the protein into chloroplasts and its location in stroma and thylakoids confirm its close relationship to the previously described Arabidopsis thaliana plastid-located ferrochelatase (FeChII). A 1700-bp tobacco FeCh cDNA sequence was expressed in Nicotiana tabacum cv. Samsun NN under the control of the CaMV 35S promoter in antisense orientation allowing investigation into the consequences of selective reduction of the plastidic ferrochelatase activity for protoporphyrin IX channeling in chloroplasts and for interactions between plastidic and mitochondrial heme synthesis. Leaves of several transformants showed a reduced chlorophyll content and, during development, a light intensity-dependent formation of necrotic leaf lesions. In comparison with wild-type plants the total ferrochelatase activity was decreased in transgenic lines leading to an accumulation of photosensitizing protoporphyrin IX. Ferrochelatase activity was reduced only in plastids but not in mitochondria of transgenic plants. By means of the specifically diminished ferrochelatase activity consequences of the selective inhibition of protoheme formation for the intracellular supply of heme can be investigated in the future.

78 citations

Journal ArticleDOI
TL;DR: ABCB6 overexpression is a potential approach to enhance accumulation of PpIX for optimizing the subjective discrimination of vague fluorescence and improving the efficacy of ALA-based photodynamic therapy.
Abstract: Glioma recurrence usually occurs close to the tumor resection margins as a result of residual infiltrating glioma cells. 5-aminolevulinic acid (ALA) fluorescence-guided resection of gliomas has been demonstrated to enhance discrimination of tumor tissue and to improve survival. ALA-based photodynamic therapy is an effective albeit still experimental adjuvant treatment option for gliomas. However, insufficient protoporphyrin IX (PpIX) accumulation may limit the benefits of fluorescence-guided resection and photodynamic therapy. We investigated the expression of the ATP-binding cassette transporter ABCB6, which regulates porphyrin synthesis, in surgical specimens from human gliomas and manipulated ABCB6 in human glioma cell lines. Our findings demonstrated that expression levels of ABCB6 were greatly elevated in human gliomas compared with normal brain tissues and correlated with World Health Organization histologic grade. A previously undescribed finding was that ABCB6 mRNA expression in solidly fluorescing tumor tissues was higher than that in vaguely fluorescing tumors, suggesting that ABCB6 may be at least in part responsible for PpIX accumulation in glioma cells. Accordingly, ABCB6 overexpression in glioma cell lines caused a marked increase in intracellular levels of PpIX, and was more sensitive to ALA-induced photodynamic therapy—events that could be prevented by silencing ABCB6 via siRNA treatment. Our findings indicate a crucial role of ABCB6 in ALA metabolism and accumulation of PpIX in glioma. ABCB6 overexpression is a potential approach to enhance accumulation of PpIX for optimizing the subjective discrimination of vague fluorescence and improving the efficacy of ALA-based photodynamic therapy.

78 citations

Journal ArticleDOI
TL;DR: Laser-induced fluorescence for in vivo point monitoring and fluorescence microscopy incorporating a CCD camera were used to study the fluorescence distribution of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) in tumours.

78 citations

Journal ArticleDOI
TL;DR: The effects of topical and systemic administration of 5‐aminolevulinic acid (ALA) were examined in several murine tumor systems with regard to porphyrin accumulation kinetics in tumor, skin and blood, vascular and tumor cell photosensitization and tumor response after light exposure.
Abstract: — The effects of topical and systemic administration of 5-aminolevulinic acid (ALA) were examined in several murine tumor systems with regard to porphyrin accumulation kinetics in tumor, skin and blood, vascular and tumor cell photosensitization and tumor response after light exposure Marked, transient increases in porphyrin levels were observed in tumor and skin after systemic and topical ALA Rapid, transient, dose-dependent porphyrin increases were also observed in blood; these were pronounced after systemic ALA injection and mild after topical application They were highest within 1 h after ALA injection, thereafter declining rapidly This matched the clearing kinetics of injected exogenous protoporphyrin IX (PpIX) Initially, vascular photosensitivity changed inversely to blood porphyrin levels, increasing gradually up to 5 h post-ALA, as porphyrin was clearing from the bloodstream This pattern was again matched by injected, exogenous PpIX After therapeutic tumor treatment vascular disruption of the tumor bed, while observed, was incomplete, especially at the tumor base Minimal direct tumor cell kill was found at low photodynamic therapy (PDT) doses (250 mg/kg ALA, 135 J/cm2 light) Significant, but limited (<1 log) direct photodynamic tumor cell kill was obtained when the PDT dose was raised to 500 mg/kg systemic ALA, followed 3 h later by 270 J/cm2, a dose that was however toxic to the animals The further reduction of clonogenic tumor cells over 24 h following treatment was moderate and probably limited by the incomplete disruption of the vasculature Tumor responses were highest when light treatment was carried out at the time of highest tumor porphyrin content rather than at the time of highest vascular photosensitivity Tumor destruction did not reach the tumor base, regardless of treatment conditions

77 citations

Journal ArticleDOI
TL;DR: This method is an efficient platform that combines the advantages of a biocompatible photosensitizer with the possibility for MRI monitoring due to the magnetic properties of the highly soluble functionalized manganese oxide nanoparticles.
Abstract: Superparamagnetic MnO nanoparticles were functionalized using a hydrophilic ligand containing protoporphyrin IX as photosensitizer. By virtue of their magnetic properties these nanoparticles may serve as contrast enhancing agents for magnetic resonance imaging (MRI), while the fluorescent target ligand protoporphyrin IX allows simultaneous tumor detection and treatment by photodynamic therapy (PDT). Caki-1 cells were incubated with these nanoparticles. Subsequent exposure to UV light lead to cell apoptosis due to photoactivation of the photosensitizer conjugated to the nanoparticles. This method offers great diagnostic potential for highly proliferative tissues, including tumors. In addition, it is an efficient platform that combines the advantages of a biocompatible photosensitizer with the possibility for MRI monitoring due to the magnetic properties of the highly soluble functionalized manganese oxide nanoparticles.

77 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
77% related
Cell growth
104.2K papers, 3.7M citations
77% related
Kinase
65.8K papers, 3.5M citations
76% related
Programmed cell death
60.5K papers, 3.8M citations
76% related
DNA
107.1K papers, 4.7M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022132
202157
202061
201958
201858