scispace - formally typeset
Search or ask a question
Topic

Protoporphyrin IX

About: Protoporphyrin IX is a research topic. Over the lifetime, 2250 publications have been published within this topic receiving 65544 citations. The topic is also known as: PpIX.


Papers
More filters
Journal ArticleDOI
TL;DR: It is confirmed genetically that the visA gene is a structural gene for ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1), and the light-induced cell death appears to be brought about by the accumulation of protoporphyrin IX, one of the substrates of ferroChelatase.
Abstract: Mutations in the visA gene of Escherichia coli cause the mutant bacteria to die upon illumination with visible light. We confirmed genetically that the visA gene is a structural gene for ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1). Since other mutations in the genes involved in the biosynthesis of heme can cure the photosensitivity, the light-induced cell death appears to be brought about by the accumulation of protoporphyrin IX, one of the substrates of ferrochelatase. When cells are illuminated with visible light, protoporphyrin IX seems to produce an active species of oxygen (probably 1O2) that is harmful to the cells. This defect is the same as that associated with the human disease protoporphyria.

77 citations

Journal Article
TL;DR: The authors propose that ARMD develops as a direct result of photosensitization of the vascular endothelium of the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium by superoxide anion and singlet oxygen generated by photoactive compounds in blood.
Abstract: Age-related macular degeneration (ARMD) is one of the leading causes of severe visual loss in the United States. Numerous risk factors have been investigated, but the pathogenesis of ARMD has remained elusive. The authors propose that ARMD develops as a direct result of photosensitization of the vascular endothelium of the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium (RPE) by superoxide anion and singlet oxygen generated by photoactive compounds in blood. Using electron-spin resonance spectrometry, the free-radical trap, 5,5-dimethyl-1-pyrroline-N-oxide, and the singlet-oxygen trap, 2-(9,10-dimethoxyanthracentyl)-t-butylhydroxylamine, the authors demonstrate that the photoactive compound, protoporphyrin IX (PP IX), a naturally occurring precursor molecule of hemoglobin found in erythrocytes and plasma, generates superoxide anion and singlet oxygen. The amount of reactive-oxygen species produced by this system is dependent on the concentration of PP IX and the intensity and wavelength of the light delivered. Furthermore, the production of these photooxidants is significantly reduced by filtering the excitatory wavelengths of PP IX. These photogenerated oxidants could damage the vascular endothelium of the choriocapillaris, Bruch's membrane, and the RPE, necessitating a reparative process. This could result in features characteristically seen in ARMD such as a thickened Bruch's membrane, RPE atrophy, and hyperplasia. Prevention of phototoxic damage by this mechanism could involve enhancing protective enzymes, increasing scavenger substances, or supplying appropriate filters to eliminate the exciting wavelengths of light.

77 citations

Journal ArticleDOI
TL;DR: ALA/PDT is a potential field therapy for condylomata based on the distribution and kinetics of protoporphyrin IX (PpIX) formation and the greatest lesiomal to normal skin fluorescence ratios occurred after 2 h.
Abstract: To examine the potential of using photodynamic therapy (PDT) in condylomata, we studied the distribution and kinetics of protoporphyrin IX (PpIX) formation in condylomata acuminata and adjacent normal skin after topical application of 5-aminolaevulinic acid (ALA). PpIX fluorescence spectra were measured hourly in vivo after ALA application. After gross fluorescence imaging, the lesions were biopsied, and fluorescence microscopy was performed. All three PpIX fluorescence detection modalities suggested selectivity of PpIX formation in condylomata after topical ALA application. In 17 of 25 condylomata, there was significantly greater fluorescence compared with adjacent normal skin. The greatest lesional to normal skin fluorescence ratios occurred after 2 h. The most likely mechanism for increased lesional PpIX formation in condylomata is enhanced stratum corneum permeability. Based on our results, ALA/PDT is a potential field therapy for condylomata. PpIX fluorescence imaging after ALA application may also be useful for localizing condylomata prior to treatment.

77 citations

Journal ArticleDOI
TL;DR: It is possible, therefore, to increase the amount of necrosis produced by ALA-induced PDT substantially, without increasing the administered dose of ALA, through the simultaneous administration of the iron-chelating agent, CP94.
Abstract: Currently, the clinical use of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PPIX) for photodynamic therapy (PDT) is limited by the maximum tolerated oral ALA dose (60 mg kg(-1)). This study investigates whether hydroxypyridinone iron-chelating agents can be used to enhance the tissue levels of PPIX, without increasing the administered dose of ALA. Quantitative charge-coupled device (CCD) fluorescence microscopy was employed to study PPIX fluorescence pharmacokinetics in the colon of normal Wistar rats. The iron chelator, CP94, when administered with ALA was found to produce double the PPIX fluorescence in the colonic mucosa, compared with the same dose of ALA given alone and to be more effective than the other iron chelator studied, CP20. Microspectrofluorimetric studies demonstrated that PPIX was the predominant porphyrin species present. PDT studies conducted on the colonic mucosa showed that the simultaneous administration of 100 mg kg(-1) CP94 i.v. and 50 mg kg(-1) ALA i.v. produced an area of necrosis three times larger than similar parameters without the iron-chelating agent with the same light dose. It is possible, therefore, to increase the amount of necrosis produced by ALA-induced PDT substantially, without increasing the administered dose of ALA, through the simultaneous administration of the iron-chelating agent, CP94.

77 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
77% related
Cell growth
104.2K papers, 3.7M citations
77% related
Kinase
65.8K papers, 3.5M citations
76% related
Programmed cell death
60.5K papers, 3.8M citations
76% related
DNA
107.1K papers, 4.7M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022132
202157
202061
201958
201858