scispace - formally typeset
Search or ask a question
Topic

Protoporphyrin IX

About: Protoporphyrin IX is a research topic. Over the lifetime, 2250 publications have been published within this topic receiving 65544 citations. The topic is also known as: PpIX.


Papers
More filters
Journal ArticleDOI
TL;DR: A dominant mutation in the ATPase active site of human CLPX is reported that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX) in human patients, identifying an additional gene that promotes PPIX overproduction and EPP and highlighting the complex gene network contributing to disorders of heme metabolism.
Abstract: Loss-of-function mutations in genes for heme biosynthetic enzymes can give rise to congenital porphyrias, eight forms of which have been described. The genetic penetrance of the porphyrias is clinically variable, underscoring the role of additional causative, contributing, and modifier genes. We previously discovered that the mitochondrial AAA+ unfoldase ClpX promotes heme biosynthesis by activation of δ-aminolevulinate synthase (ALAS), which catalyzes the first step of heme synthesis. CLPX has also been reported to mediate heme-induced turnover of ALAS. Here we report a dominant mutation in the ATPase active site of human CLPX, p.Gly298Asp, that results in pathological accumulation of the heme biosynthesis intermediate protoporphyrin IX (PPIX). Amassing of PPIX in erythroid cells promotes erythropoietic protoporphyria (EPP) in the affected family. The mutation in CLPX inactivates its ATPase activity, resulting in coassembly of mutant and WT protomers to form an enzyme with reduced activity. The presence of low-activity CLPX increases the posttranslational stability of ALAS, causing increased ALAS protein and ALA levels, leading to abnormal accumulation of PPIX. Our results thus identify an additional molecular mechanism underlying the development of EPP and further our understanding of the multiple mechanisms by which CLPX controls heme metabolism.

60 citations

Journal ArticleDOI
TL;DR: Performing a photodynamic diagnosis (PDD) and photodynamic therapy (PDT) using 5-ALA have given rise to a new strategy for tumor diagnosis and therapy.

60 citations

Journal ArticleDOI
TL;DR: It was found that the soluble BchH protein increased the activity of S‐adenosyl‐l‐methionine:magnesium protoporphyrin IX methyltransferase, when mixed with membranes of an expression strain of E. coli into which the bchM gene had been cloned.

60 citations

Journal ArticleDOI
TL;DR: It is demonstrated that one of the two Synechocystis sp.

59 citations

Journal ArticleDOI
TL;DR: It is demonstrated that heme precursor protoporphyrin IX (GaPPIX) is capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron.
Abstract: Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that Ga PPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through heme-uptake systems, primarily the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

59 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
77% related
Cell growth
104.2K papers, 3.7M citations
77% related
Kinase
65.8K papers, 3.5M citations
76% related
Programmed cell death
60.5K papers, 3.8M citations
76% related
DNA
107.1K papers, 4.7M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022132
202157
202061
201958
201858