scispace - formally typeset
Search or ask a question
Topic

Protoporphyrin IX

About: Protoporphyrin IX is a research topic. Over the lifetime, 2250 publications have been published within this topic receiving 65544 citations. The topic is also known as: PpIX.


Papers
More filters
Journal ArticleDOI
TL;DR: Structural analysis and gel chromatography indicated that hPPO is a monomer rather than a homodimer in vitro, and the founder‐effect mutation R59W in VP patients is most likely caused by a severe electrostatic hindrance in the hydrophilic binding pocket involving the bulky, hydro‐phobic indolyl ring of the tryptophan.
Abstract: Human protoporphyrinogen IX oxidase (hPPO), a mitochondrial inner membrane protein, converts protoporphyrinogen IX to protoporphyrin IX in the heme biosynthetic pathway. Mutations in the hPPO gene cause the inherited human disease variegate porphyria (VP). In this study, we report the crystal structure of hPPO in complex with the coenzyme flavin adenine dinucleotide (FAD) and the inhibitor acifluorfen at a resolution of 1.9 A. The structural and biochemical analyses revealed the molecular details of FAD and acifluorfen binding to hPPO as well as the interactions of the substrate with hPPO. Structural analysis and gel chromatography indicated that hPPO is a monomer rather than a homodimer in vitro. The founder-effect mutation R59W in VP patients is most likely caused by a severe electrostatic hindrance in the hydrophilic binding pocket involving the bulky, hydrophobic indolyl ring of the tryptophan. Forty-seven VP-causing mutations were purified by chromatography and kinetically characterized in vitro. The...

53 citations

Journal ArticleDOI
TL;DR: Transgenic rice plants over-expressing human protoporphyrinogen IX oxidase (PPO) with the aim to increase mitochondrial PPO activity and confer herbicide resistance showed during further leaf development the formation of severe necrotic spots and growth retardation.
Abstract: We generated transgenic rice plants (Oryza sativa cv. Dongjin) over-expressing human protoporphyrinogen IX oxidase (PPO) with the aim to increase mitochondrial PPO activity and confer herbicide resistance (Lee et al., Pestic Biochem Physiol 80:65-74, 2004). The transgenic plants showed during further leaf development the formation of severe necrotic spots and growth retardation. Several experiments were performed to examine the reasons for the formation of necrotic leaf lesions. Human PPO is normally located in mitochondria. An in vitro organellar import experiment revealed translocation of human PPO into pea chloroplasts, but not into mitochondria. Using a specific antibody raised against human PPO confirmed its plastidic localisation. The heme and chlorophyll contents were lower in necrotic leaves than wild-type leaves. Interestingly, mature and necrotic leaves of 12-week-old transgenic plants contained up to 14- and 24-fold more protoporphyrin IX, respectively, than mature wild-type leaves. Enhanced levels of Mg-Protoporphyrin IX, Mg-Protoporphyrin IX monomethyl ester and protochlorophyllide were concurrently observed in transgenic plants relative to wild type. Accumulated porphyrins and Mg-porphyrins likely act as photosensitizers and cause high formation of the reactive oxygen species. These high levels of tetrapyrrole intermediates correlated with increased rates of 5-aminolevulinic acid synthesis in transgenic plants. Tetrapyrrole-induced photooxidation was confirmed by increased lipid peroxidation and subsequent cell death. The transgenic phenotype is the consequence of a highly modified tetrapyrrole metabolism due to additional expression of human PPO. A possible regulatory role of PPO in graminaceous seedlings is discussed.

53 citations

Journal ArticleDOI
Quanhong Liu1, Xiaobing Wang1, Pan Wang1, Hao Qi1, Kun Zhang1, Lina Xiao1 
TL;DR: The cytotoxic effect of PPIX on isolated sarcoma 180 cells induced by ultrasound was investigated and results indicate the involvement of a sonochemical mechanism.

53 citations

Journal ArticleDOI
TL;DR: Results indicated that ALA‐based‐PDA induced apoptotic cell death through a mitochondrial pathway and that ferrochelatase inhibitors might enhanced the effect of PDT for tumors even at low concentrations of ALA.
Abstract: Photodynamic therapy (PDT) for tumors is based on the tumor-selective accumulation of a photosensitizer, protoporphyrin IX (PpIX), followed by irradiation with visible light. However, the molecular mechanism of cell death caused by PDT has not been fully elucidated. The 5-aminolevulinic acid (ALA)-based photodynamic action (PDA) was dependent on the accumulation of PpIX, the level of which decreased rapidly by eliminating ALA from the incubation medium in human histiocytic lymphoma U937 cells. PDA induced apoptosis characterized by lipid peroxidation, increase in Bak and Bax/Bcl-xL, decrease in Bid, membrane depolarization, cytochrome c release, caspase-3 activation, phosphatidylserine (PS) externalization. PDT-induced cell death seemed to occur predominantly via apoptosis through distribution of PpIX in mitochondria. These cell death events were enhanced by ferrochelatase inhibitors. These results indicated that ALA-based-PDA induced apoptotic cell death through a mitochondrial pathway and that ferrochelatase inhibitors might enhanced the effect of PDT for tumors even at low concentrations of ALA.

52 citations

Journal ArticleDOI
TL;DR: Intact developing chloroplasts isolated from greening cucumber cotyledons were found to contain all the enzymes necessary for the synthesis of chlorophyllide, and glutamate, delta-aminolevulinic acid, and protoporphyrin IX were converted.
Abstract: Intact developing chloroplasts isolated from greening cucumber (Cucumis sativus L. var Beit Alpha) cotyledons were found to contain all the enzymes necessary for the synthesis of chlorophyllide. Glutamate was converted to Mg-protoporphyrin IX (monomethyl ester) and protoclorophyllide. δ-Aminolevulinic acid and protoporphyrin IX were converted to Mg-protoporphyrin IX, Mg-protoporphyrin IX monomethyl ester, protochlorophyllide and chlorophyllide a. The conversion of δ-aminolevulinic acid or protoporphyrin IX to Mg-protoporphyrin IX (monomethyl ester) was inhibited by AMP and p-chloromercuribenzene sulfonate. Light stimulated the formation of Mg-protoporphyrin IX from all three substrates. In the case of δ-aminolevulinic acid and protoporphyrin IX, light could be replaced by exogenous ATP. In the case of glutamate, both ATP and reducing power were necessary to replace light. With all three substrates, glutamate, δ-aminolevulinic acid, and protoporphyrin IX, the stimulation of Mg-protoporphyrin IX accumulation in the light was abolished by DCMU, and this DCMU block was overcome by added ATP and reducing power.

52 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
77% related
Cell growth
104.2K papers, 3.7M citations
77% related
Kinase
65.8K papers, 3.5M citations
76% related
Programmed cell death
60.5K papers, 3.8M citations
76% related
DNA
107.1K papers, 4.7M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022132
202157
202061
201958
201858