scispace - formally typeset
Search or ask a question
Topic

Prototype filter

About: Prototype filter is a research topic. Over the lifetime, 12572 publications have been published within this topic receiving 199992 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A directionally oriented 2-D filter bank with the property that the individual channels may be critically sampled without loss of information is introduced and it is shown that these filter bank outputs may be maximally decimated to achieve a minimum sample representation in a way that permits the original signal to be exactly reconstructed.
Abstract: The authors introduce a directionally oriented 2-D filter bank with the property that the individual channels may be critically sampled without loss of information. The passband regions of the component filters are wedge-shaped and thus provide directional information. It is shown that these filter bank outputs may be maximally decimated to achieve a minimum sample representation in a way that permits the original signal to be exactly reconstructed. The authors discuss the theory for directional decomposition and reconstruction. In addition, implementation issues are addressed where realizations based on both recursive and nonrecursive filters are considered. >

911 citations

Book
01 Jan 1987
TL;DR: Introduction to Digital Filters Properties of Finite Impulse-Response Filters Design of Linear-Phase Finite Filters Minimum Phase and Complex Approximation and Comparison of Filtering Alternatives Appendix Index.
Abstract: Introduction to Digital Filters Properties of Finite Impulse-Response Filters Design of Linear-Phase Finite Filters Minimum Phase and Complex Approximation Implementation of Finite Impulse-Response Filters Properties of Infinite Impulse-Response Filters Design of Infinite Impulse-Response Filters Implementation of Infinite-Response Filters Comparison of Filtering Alternatives Appendix Index

908 citations

Journal ArticleDOI
TL;DR: An efficient procedure for the design of finite-length impulse response filters with linear phase is presented, which obtains the optimum Chebyshev approximation on separate intervals corresponding to passbands and/or stopbands.
Abstract: An efficient procedure for the design of finite-length impulse response filters with linear phase is presented. The algorithm obtains the optimum Chebyshev approximation on separate intervals corresponding to passbands and/or stopbands, and is capable of designing very long filters. This approach allows the exact specification of arbitrary band-edge frequencies as opposed to previous algorithms which could not directly control pass- and stopband locations and could only obtain (N - 1)/2 different band-edge locations for a length N low-pass filter, for fixed \delta_{1} and \delta_{2} . As an aid in practical application of the algorithm, several graphs are included to show relations among the parameters of filter length, transition width, band-edge frequencies, passband ripple, and stopband attenuation.

806 citations

Journal ArticleDOI
TL;DR: In this article, a simple filter for controlling high-frequency computational and physical modes arising in time integrations is proposed, and a linear analysis of the filter with leapfrog, implicit, and semi-implicit, differences is made.
Abstract: A simple filter for controlling high-frequency computational and physical modes arising in time integrations is proposed. A linear analysis of the filter with leapfrog, implicit, and semi-implicit, differences is made. The filter very quickly removes the computational mode and is also very useful in damping high-frequency physical waves. The stability of the leapfrog scheme is adversely affected when a large filter parameter is used, but the analysis shows that the use of centered differences with frequency filter is still more advantageous than the use of the Euler-backward method. An example of the use of the filter in an actual forecast with the meteorological equations is shown.

799 citations

Journal ArticleDOI
TL;DR: In this paper, approximate design formulas for bandpass filters using parallel coupled stripling stepped impedance resonators (SIR) are derived, taking into account the arbitrary coupling length as well as quarter-wavelength coupling.
Abstract: Approximate design formulas for bandpass filters using parallel coupled stripling stepped impedance resonators (SIR) are derived. The formulas take into account the arbitrary coupling length as well as quarter-wavelength coupling. Some advantages of this filter are its abilities to control spurious response and insertion loss by changing the structure of the resonator. Using the design formulas two experimental filters were designed and fabricated and their performances closely matched design data.

784 citations


Network Information
Related Topics (5)
Amplifier
163.9K papers, 1.3M citations
89% related
Signal processing
73.4K papers, 983.5K citations
89% related
CMOS
81.3K papers, 1.1M citations
86% related
Resonator
76.5K papers, 1M citations
85% related
Antenna (radio)
208K papers, 1.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202335
202280
202133
202054
201969