scispace - formally typeset
Search or ask a question

Showing papers on "Pseudogene published in 1998"


Journal ArticleDOI
27 Nov 1998-Science
TL;DR: Teleosts, the most species-rich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anterior-posterior axis.
Abstract: HOX genes specify cell fate in the anterior-posterior axis of animal embryos. Invertebrate chordates have one HOX cluster, but mammals have four, suggesting that cluster duplication facilitated the evolution of vertebrate body plans. This report shows that zebrafish have seven hox clusters. Phylogenetic analysis and genetic mapping suggest a chromosome doubling event, probably by whole genome duplication, after the divergence of ray-finned and lobe-finned fishes but before the teleost radiation. Thus, teleosts, the most species-rich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anterior-posterior axis.

1,730 citations


Journal ArticleDOI
TL;DR: The Mi locus of tomato confers resistance to root knot nematodes, and three open reading frames were identified with similarity to cloned plant disease resistance genes, including Prf, a tomato gene required for resistance to Pseudomonas syringae.
Abstract: The Mi locus of tomato confers resistance to root knot nematodes. Tomato DNA spanning the locus was isolated as bacterial artificial chromosome clones, and 52 kb of contiguous DNA was sequenced. Three open reading frames were identified with similarity to cloned plant disease resistance genes. Two of them, Mi-1.1 and Mi-1.2, appear to be intact genes; the third is a pseudogene. A 4-kb mRNA hybridizing with these genes is present in tomato roots. Complementation studies using cloned copies of Mi-1.1 and Mi-1.2 indicated that Mi-1.2, but not Mi-1.1, is sufficient to confer resistance to a susceptible tomato line with the progeny of transformants segregating for resistance. The cloned gene most similar to Mi-1.2 is Prf, a tomato gene required for resistance to Pseudomonas syringae. Prf and Mi-1.2 share several structural motifs, including a nucleotide binding site and a leucine-rich repeat region, that are characteristic of a family of plant proteins, including several that are required for resistance against viruses, bacteria, fungi, and now, nematodes.

753 citations


Journal ArticleDOI
TL;DR: Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the loci took place at least eight times between 133 and 10 million years ago.
Abstract: The complete nucleotide sequence of the 957-kb DNA of the human immunoglobulin heavy chain variable (VH) region locus was determined and 43 novel VH segments were identified. The region contains 123 VH segments classifiable into seven different families, of which 79 are pseudogenes. Of the 44 VH segments with an open reading frame, 39 are expressed as heavy chain proteins and 1 as mRNA, while the remaining 4 are not found in immunoglobulin cDNAs. Combinatorial diversity of VH region was calculated to be ∼6,000. Conservation of the promoter and recombination signal sequences was observed to be higher in functional VH segments than in pseudogenes. Phylogenetic analysis of 114 VH segments clearly showed clustering of the VH segments of each family. However, an independent branch in the tree contained a single VH, V4-44.1P, sharing similar levels of homology to human VH families and to those of other vertebrates. Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the locus took place at least eight times between 133 and 10 million years ago. One nonimmunoglobulin gene of unknown function was identified in the intergenic region.

458 citations


Journal ArticleDOI
15 Jan 1998-Genomics
TL;DR: The identification and characterization of three novel human forkhead genes with similarity to FKHR are reported, suggesting that these four genes represent an FK HR-like gene subfamily within the larger human Forkhead gene family.

339 citations


Journal ArticleDOI
TL;DR: The molecular cloning of an approximately 1-Mb region of recurrent amplification at 20q13.2 in breast cancer and other tumors and the delineation of a 260-kb common region of amplification are reported.
Abstract: We report here the molecular cloning of an ≈1-Mb region of recurrent amplification at 20q13.2 in breast cancer and other tumors and the delineation of a 260-kb common region of amplification. Analysis of the 1-Mb region produced evidence for five genes, ZNF217, ZNF218, and NABC1, PIC1L (PIC1-like), CYP24, and a pseudogene CRP (Cyclophillin Related Pseudogene). ZNF217 and NABC1 emerged as strong candidate oncogenes and were characterized in detail. NABC1 is predicted to encode a 585-aa protein of unknown function and is overexpressed in most but not all breast cancer cell lines in which it was amplified. ZNF217 is centrally located in the 260-kb common region of amplification, transcribed in multiple normal tissues, and overexpressed in all cell lines and tumors in which it is amplified and in two in which it is not. ZNF217 is predicted to encode alternately spliced, Kruppel-like transcription factors of 1,062 and 1,108 aa, each having a DNA-binding domain (eight C2H2 zinc fingers) and a proline-rich transcription activation domain.

312 citations


Journal ArticleDOI
TL;DR: The patterns of variation support the predicted structure of LRR regions with solvent-exposed hypervariable residues that are potentially involved in binding pathogen-derived ligands.
Abstract: Disease resistance genes in plants are often found in complex multigene families. The largest known cluster of disease resistance specificities in lettuce contains the RGC2 family of genes. We compared the sequences of nine full-length genomic copies of RGC2 representing the diversity in the cluster to determine the structure of genes within this family and to examine the evolution of its members. The transcribed regions range from at least 7.0 to 13.1 kb, and the cDNAs contain deduced open reading frames of approximately 5. 5 kb. The predicted RGC2 proteins contain a nucleotide binding site and irregular leucine-rich repeats (LRRs) that are characteristic of resistance genes cloned from other species. Unique features of the RGC2 gene products include a bipartite LRR region with >40 repeats. At least eight members of this family are transcribed. The level of sequence diversity between family members varied in different regions of the gene. The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitutions was lowest in the region encoding the nucleotide binding site, which is the presumed effector domain of the protein. The LRR-encoding region showed an alternating pattern of conservation and hypervariability. This alternating pattern of variation was also found in all comparisons within families of resistance genes cloned from other species. The Ka /Ks ratios indicate that diversifying selection has resulted in increased variation at these codons. The patterns of variation support the predicted structure of LRR regions with solvent-exposed hypervariable residues that are potentially involved in binding pathogen-derived ligands.

284 citations


Journal ArticleDOI
TL;DR: Findings indicate that expression of the functional λ5/14.1 is critical for B cell development in the human and that when expressed in COS cells, the allele carrying the pseudogene sequence resulted in defective folding and secretion of mutant λ 5/ 14.1.
Abstract: B cell precursors transiently express a pre–B cell receptor complex consisting of a rearranged mu heavy chain, a surrogate light chain composed of λ5/14.1 and VpreB, and the immunoglobulin (Ig)-associated signal transducing chains, Igα and Igβ. Mutations in the mu heavy chain are associated with a complete failure of B cell development in both humans and mice, whereas mutations in murine λ5 result in a leaky phenotype with detectable humoral responses. In evaluating patients with agammaglobulinemia and markedly reduced numbers of B cells, we identified a boy with mutations on both alleles of the gene for λ5/14.1. The maternal allele carried a premature stop codon in the first exon of λ5/14.1 and the paternal allele demonstrated three basepair substitutions in a 33-basepair sequence in exon 3. The three substitutions correspond to the sequence in the λ5/14.1 pseudogene 16.1 and result in an amino acid substitution at an invariant proline. When expressed in COS cells, the allele carrying the pseudogene sequence resulted in defective folding and secretion of mutant λ5/14.1. These findings indicate that expression of the functional λ5/14.1 is critical for B cell development in the human.

262 citations


Book ChapterDOI
01 Jan 1998
TL;DR: In this article, the authors describe mechanisms of gene deletion and the DNA sequences that may predispose to such lesions, as well as potential mechanisms underlying insertions, duplications, or inversions, with representative examples.
Abstract: There are a variety of different types of mutations in the human genome and many diverse mechanisms for their generation. Single-base-pair substitutions account for the majority of gene defects. Among them, the hypermutability of CpG dinucleotides represents the most important and frequent cause of mutation in humans. Point mutations may affect transcription and translation, as well as mRNA splicing and processing. Mutations in regulatory elements are of particular significance, since they often reveal the existence of DNA domains that are bound by regulatory proteins. Similarly, mutations that affect mRNA splicing can contribute to our understanding of the splicing mechanism. We describe mechanisms of gene deletion and the DNA sequences that may predispose to such lesions, as well as potential mechanisms underlying insertions, duplications, or inversions, with representative examples. Retrotransposition is a rare but biologically fascinating phenomenon that can lead to abnormal phenotypes if the double-stranded DNA is inserted in functionally important regions of a gene. Long interspersed repeat elements (LINEs) and Alu repetitive elements and pseudogenes have been shown to function as retrotransposons, and their de novo insertion in the genome can produce disease. The expansion of trinucleotide repeats represents a relatively novel category of mutations in humans. There is a growing list of disorders that result from an abnormal copy number of trinucleotides within the 5′ or 3′ untranslated regions, coding sequences, and introns of genes. The pathophysiologic effects of the expansion of the trinucleotide repeat are unknown. Additionally, at least one disorder is caused by expansion of a 12mer repeat (progressive myoclonus epilepsy). The study of mutations in human genes is of paramount importance in understanding the pathophysiology of hereditary disorders, in providing improved diagnostic tests, and in designing appropriate therapeutic approaches.

248 citations


Journal ArticleDOI
TL;DR: The results strongly suggest that the high rate of DNA loss is a general feature of Drosophila and not a peculiar property of a particular stretch of DNA in a particular species group.
Abstract: We recently proposed that patterns of evolution of non-LTR retrotransposable elements can be used to study patterns of spontaneous mutation. Transposition of non-LTR retrotransposable elements commonly results in creation of 5' truncated, "dead-on-arrival" copies. These inactive copies are effectively pseudogenes and, according to the neutral theory, their molecular evolution ought to reflect rates and patterns of spontaneous mutation. Maximum parsimony can be used to separate the evolution of active lineages of a non-LTR element from the fate of the "dead-on-arrival" insertions and to directly assess the relative frequencies of different types of spontaneous mutations. We applied this approach using a non-LTR element, Helena, in the Drosophila virilis group and have demonstrated a surprisingly high incidence of large deletions and the virtual absence of insertions. Based on these results, we suggested that Drosophila in general may exhibit a high rate of spontaneous large deletions and have hypothesized that such a high rate of DNA loss may help to explain the puzzling dearth of bona fide pseudogenes in Drosophila. We also speculated that variation in the rate of spontaneous deletion may contribute to the divergence of genome size in different taxa by affecting the amount of superfluous "junk" DNA such as, for example, pseudogenes or long introns. In this paper, we extend our analysis to the D. melanogaster subgroup, which last shared a common ancestor with the D. virilis group approximately 40 MYA. In a different region of the same transposable element, Helena, we demonstrate that inactive copies accumulate deletions in species of the D. melanogaster subgroup at a rate very similar to that of the D. virilis group. These results strongly suggest that the high rate of DNA loss is a general feature of Drosophila and not a peculiar property of a particular stretch of DNA in a particular species group.

222 citations


Journal ArticleDOI
01 Sep 1998-Genetics
TL;DR: Southern hybridization experiments using mtDNAs purified from multiple akamata individuals showed that the duplicate state of the control region is not a transient or unstable feature found in a particular individual, but that it stably occurs in mitochondrial genomes of the species.
Abstract: The 17,191-bp mitochondrial DNA (mtDNA) of a Japanese colubrid snake, akamata ( Dinodon semicarinatus ), was cloned and sequenced. The snake mtDNA has some peculiar features that were found in our previous study using polymerase chain reaction: duplicate control regions that have completely identical sequences over 1 kbp, translocation of tRNA Leu (UUR) gene, shortened TψC arm for most tRNA genes, and a pseudogene for tRNA Pro . Phylogenetic analysis of amino acid sequences of protein genes suggested an unusually high rate of molecular evolution in the snake compared to other vertebrates. Southern hybridization experiments using mtDNAs purified from multiple akamata individuals showed that the duplicate state of the control region is not a transient or unstable feature found in a particular individual, but that it stably occurs in mitochondrial genomes of the species. This may, therefore, be regarded as an unprecedented example of stable functional redundancy in animal mtDNA. However, some of the examined individuals contain a rather scanty proportion of heteroplasmic mtDNAs with an organization of genes distinct from that of the major mtDNA. The gene organization of the minor mtDNA is in agreement with one of models that we present to account for the concerted evolution of duplicate control regions.

213 citations


Journal ArticleDOI
TL;DR: It is demonstrated that members of the olfactory receptor (OR) gene family are distributed on all but a few human chromosomes and through FISH analysis, it is shown that OR sequences reside at more than 25 locations in the human genome.
Abstract: We demonstrate that members of the olfactory receptor (OR) gene family are distributed on all but a few human chromosomes. Through FISH analysis, we show that OR sequences reside at more than 25 locations in the human genome. Their distribution is biased for terminal bands. Flow-sorted chromosomes were used to isolate 87 OR sequences derived from 16 chromosomes. Their sequence-relationships are indicative of the inter- and intrachromosomal duplications responsible for OR family expansion. The human genome has accumulated a striking number of dysfunctional copies: 72% of the sequences are pseudogenes. ORF-containing sequences predominate on chromosomes 7, 16 and 17.

Journal ArticleDOI
TL;DR: The results support the notion that class I receptors may be specialized for detecting water-soluble odorants and class II receptors for recognizing volatile odorants, and the number and diversity of olfactory receptor genes in different species provides insight into the origin and the evolution of this unique gene family.
Abstract: In species representing different levels of vertebrate evolution, olfactory receptor genes have been identified by molecular cloning techniques Comparing the deduced amino-acid sequences revealed that the olfactory receptor gene family of Rana esculenta resembles that of Xenopus laevis, indicating that amphibians in general may comprise two classes of olfactory receptors Whereas teleost fish, including the goldfish Carassius auratus, possess only class I receptors, the `living fossil' Latimeria chalumnae is endowed with both receptor classes; interestingly, most of the class II genes turned out to be pseudogenes Exploring receptor genes in aquatic mammals led to the discovery of a large array of only class II receptor genes in the dolphin Stenella Coeruleoalba; however, all of these genes were found to be non-functional pseudogenes These results support the notion that class I receptors may be specialized for detecting water-soluble odorants and class II receptors for recognizing volatile odorants Comparing the structural features of both receptor classes from various species revealed that they differ mainly in their extracellular loop 3, which may contribute to ligand specificity Comparing the number and diversity of olfactory receptor genes in different species provides insight into the origin and the evolution of this unique gene family

Journal ArticleDOI
TL;DR: Overexpression of CAD potentiated DNA fragmentation by apoptotic stimuli in these cell lines, indicating that CAD is responsible for the apoptotic DNA degradation.
Abstract: Caspase-activated DNase (CAD) cleaves chromosomal DNA during apoptosis. Here, we report isolation of two classes of human CAD cDNAs from a human KT-3 leukemic cell cDNA library. One class of cDNA encoded a protein comprising 338 amino acids, which showed a marked similarity to its murine counterpart. In vitro transcription and translation of this cDNA resulted in a functional CAD protein when the protein was synthesized in the presence of its inhibitor (inhibitor of CAD). The other cDNA class contained many deletions, insertions, and point mutations in the sequence corresponding to the coding region, suggesting that it is derived from a pseudogene. The functional CAD gene was localized to human chromosome 1p36.3 by fluorescent in situ hybridization. The CAD mRNA was expressed in a limited number of human tissues, including pancreas, spleen, prostate, and ovary. The expression of the CAD mRNA in human cell lines correlated with their ability to show DNA fragmentation during apoptosis. Overexpression of CAD potentiated DNA fragmentation by apoptotic stimuli in these cell lines, indicating that CAD is responsible for the apoptotic DNA degradation.

Journal ArticleDOI
TL;DR: Phylogenetic analyses of the str and stl families, and comparisons with a few orthologs in Caenorhabditis briggsae, reveal ongoing processes of gene duplication, diversification, and movement.
Abstract: The str family of genes encoding seven-transmembrane G-protein-coupled or serpentine receptors related to the ODR-10 diacetyl chemoreceptor is very large, with at least 197 members in the Caenorhabditis elegans genome. The closely related stl family has 43 genes, and both families are distantly related to the srd family with 55 genes. Analysis of the structures of these genes indicates that a third of them are clearly or likely pseudogenes. Preliminary surveys of other candidate chemoreceptor families indicates that as many as 800 genes and pseudogenes or 6% of the genome might encode 550 functional chemoreceptors constituting 4% of the C. elegans protein complement. Phylogenetic analyses of the str and stl families, and comparisons with a few orthologs in Caenorhabditis briggsae, reveal ongoing processes of gene duplication, diversification, and movement. The reconstructed ancestral gene structures for these two families have eight introns each, four of which are homologous. Mapping of intron distributions on the phylogenetic tree reveals that each intron has been lost many times independently. Most of these introns were lost individually, which might best be explained by precise in-frame deletions involving nonhomologous recombination between short direct repeats at their termini. [Alignment of the putatively functional proteins in the str and stl families is available from Pfam (http://genome. wustl.edu/Pfam); alignments of all translations are available at http://cshl.org/gr; alignments of the genes are available from the author at hughrobe@uiuc.edu]

Journal ArticleDOI
TL;DR: A duplicated region near the common deletion breakpoints of Williams-Beuren syndrome is characterized, which includes a transcribed gene that may predispose to unequal meiotic recombination between chromosome 7 homologs and/or to intrachromosomal rearrangements.
Abstract: Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder with multisystemic manifestations caused by heterozygosity for a partial deletion of chromosome band 7q11.23. The breakpoints cluster within regions located approximately 1 cM either side of the elastin (ELN) locus. We have characterized a duplicated region near the common deletion breakpoints, which includes a transcribed gene. The centromeric (C) and telomeric (T) copies are almost identical in the duplicated 3[prime] portions but diverge at their 5[prime]-ends. C-specific 4.3 kb mRNA and T-specific 5.4 kb mRNA are widely expressed in embryonic and adult tissues. The telomeric gene gives rise to several alternatively spliced forms and is deleted in all WBS individuals who have documented ELN deletions. Database searches revealed that this gene encodes BAP-135, a protein phosphorylated by Bruton's tyrosine kinase in B cells, as well as the multifunctional transcription factor TFII-I, hence the gene name GTF2I. The centromeric gene is not deleted in WBS and appears to be a partially truncated expressed pseudogene with no protein product (gene name GTF2IP1). Both loci map to different genomic clone contigs that also contain other deleted and non-deleted loci. A probe from the shared region recognizes a >3 Mb Not I junction fragment that is unique to individuals with the WBS deletion. Therefore, the duplicated region containing GTF2I and GTF2IP1 respectively is located close to the deletion breakpoints and may predispose to unequal meiotic recombination between chromosome 7 homologs and/or to intrachromosomal rearrangements. Hemizygosity for GTF2I may also contribute to the WBS phenotype.

Journal ArticleDOI
TL;DR: This map provides a foundation for the study of the possible roles of ribosomal protein deficiencies in chromosomal and Mendelian disorders.
Abstract: We mapped 75 genes that collectively encode >90% of the proteins found in human ribosomes. Because localization of ribosomal protein genes (rp genes) is complicated by the existence of processed pseudogenes, multiple strategies were devised to identify PCR-detectable sequence-tagged sites (STSs) at introns. In some cases we exploited specific, pre-existing information about the intron/exon structure of a given human rp gene or its homolog in another vertebrate. When such information was unavailable, selection of PCR primer pairs was guided by general insights gleaned from analysis of all mammalian rp genes whose intron/exon structures have been published. For many genes, PCR amplification of introns was facilitated by use of YAC pool DNAs rather than total human genomic DNA as templates. We then assigned the rp gene STSs to individual human chromosomes by typing human‐rodent hybrid cell lines. The genes were placed more precisely on the physical map of the human genome by typing of radiation hybrids or screening YAC libraries. Fifty-one previously unmapped rp genes were localized, and 24 previously reported rp gene localizations were confirmed, refined, or corrected. Though functionally related and coordinately expressed, the 75 mapped genes are widely dispersed: Both sex chromosomes and at least 20 of the 22 autosomes carry one or more rp genes. Chromosome 19, known to have a high gene density, contains an unusually large number of rp genes (12). This map provides a foundation for the study of the possible roles of ribosomal protein deficiencies in chromosomal and Mendelian disorders. [The sequence data described in this paper have been submitted to GenBank. They are listed in Table 1.]

Journal ArticleDOI
TL;DR: This distribution pattern argues for a transplacental pathway rather than for germline transmission which might be expected only after long-time feeding regimens, and in rare cells of three different fetuses, whose mothers have been fed with M13 DNA during gestation, the foreign DNA was detected by FISH in association with both chromatids.
Abstract: We have previously shown that, when administered orally to mice, bacteriophage M13 DNA, as a paradigm foreign DNA without homology to the mouse genome, can persist in fragmented form in the gastrointestinal tract, penetrate the intestinal wall, and reach the nuclei of leukocytes, spleen and liver cells. Similar results were obtained when a plasmid containing the gene for the green fluorescent protein (pEGFP-C1) was fed to mice. In spleen, the foreign DNA was detected in covalent linkage to DNA with a high degree of homology to mouse genes, perhaps pseudogenes, or to authentic E. coli DNA. We have now extended these studies to the offspring of mice that were fed regularly during pregnancy with a daily dose of 50 g of M13 or pEGFP-C1 DNA. Using the polymerase chain reaction (PCR) or the fluorescent in situ hybridization (FISH) method, foreign DNA, orally ingested by pregnant mice, can be discovered in various organs of fetuses and of newborn animals. The M13 DNA fragments have a length of about 830 bp. In various organs of the mouse fetus, clusters of cells contain foreign DNA as revealed by FISH. The foreign DNA is invariably located in the nuclei. We have never found all cells of the fetus to be transgenic for the foreign DNA. This distribution pattern argues for a transplacental pathway rather than for germline transmission which might be expected only after long-time feeding regimens. In rare cells of three different fetuses, whose mothers have been fed with M13 DNA during gestation, the foreign DNA was detected by FISH in association with both chromatids. Is maternally ingested foreign DNA a potential mutagen for the developing fetus?

Journal ArticleDOI
TL;DR: The data indicate that the TF subfamily of L1s contains a major class of mobile elements that is expanding in the mouse genome, and is likely intermediates in retrotransposition.
Abstract: In the above paper the authors reported high‐frequency retrotransposition of mouse and human L1 elements in mouse …

Journal ArticleDOI
TL;DR: The study infers the frequency of functional divergence from the size distribution of gene families produced by two successive genome duplications early in vertebrate evolution and reasons for this unexpectedly high frequency are discussed.
Abstract: Gene duplication events are important sources of novel gene functions. However, more often than not, a duplicate gene may lose its function and become a pseudogene. What is the relative frequency of these two scenarios: functional divergence versus gene loss? Given that most non-neutral mutations are deleterious, gene loss should be far more frequent than divergence. However, a recent empirical study suggests that about 50% of all gene duplications will lead to functional divergence. The study infers the frequency of functional divergence from the size distribution of gene families produced by two successive genome duplications early in vertebrate evolution. Reasons for this unexpectedly high frequency of functional divergence are discussed.

Journal ArticleDOI
TL;DR: The relative location and orientation of each of the SP-A and SP-D genomic sequences are reported, with the finding that theSP-A pseudogene lies in a reverse orientation 15 kb away from the 5' side of SP- a1.
Abstract: The human surfactant protein (SP) A locus has been assigned to chromosome 10q22-q23 and consists of two very similar genes, SP-A1 and SP-A2, as well as a truncated pseudogene. SP-A belongs to the family of collagenous C-type lectins along with mannose binding protein (MBP) and SP-D, both of which have also been mapped to the long arm of chromosome 10. In this article we report the relative location and orientation of each of the SP-A and SP-D genomic sequences. Characterization of two overlapping genomic clones revealed that the SP-A pseudogene lies in a reverse orientation 15 kb away from the 5' side of SP-A1. This finding was verified by the amplification of the entire SP-A pseudogene/SP-A1 intergenic region using long-range polymerase chain reaction. The relative location of SP-A2 and SP-D was then ascertained by testing a number of sequence tagged sites against the Stanford TNG3 and G3 radiation hybrid panels. The radiation hybrid mapping data showed that both SP-A2 and SP-D are on the 5' side of SP-A1 at approximate distances of 40 kb and 120 kb, respectively. The SP-A and SP-D loci were also oriented relative to the centromere, with the overall order being: centromere-SP-D-SP-A2-pseudogene-SP-A1- telomere.

Journal ArticleDOI
TL;DR: The amount of variation present among NTS sequences indicates that accumulation of variation is greater in this multicopy gene than is gene conversion (homogenization) and makes the 5S NTS an inappropriate DNA sequence for comparisons of closely related taxa.
Abstract: This study was designed to characterize further the nontranscribed intergenic spacers (NTSs) of the 5S rRNA genes of fish and evaluate this marker as a tool for comparative studies. Two members of the closely related North American Great Lakes cisco species complex (Coregonus artedi and C. zenithicus) were chosen for comparison. Fluorescence in situ hybridization found the ciscoes to have a single multicopy 5S locus located in a C band-positive region of the largest submetacentric chromosome. The entire NTS was amplified from the two species by polymerase chain reaction with oligonucleotide primers anchored in the conserved 5S coding region. Complete sequences were determined for 25 clones from four individuals representing two discrete NTS length variants. Sequence analysis found the length variants to result from presence of a 130-bp direct repeat. No two sequences from a single fish were identical. Examination of sequence from the coding region revealed two types of 5S genes in addition to pseudogenes. This suggests the presence of both somatic and germline (oocyte) forms of the 5S gene in the genome of Coregonus. The amount of variation present among NTS sequences indicates that accumulation of variation (mutation) is greater in this multicopy gene than is gene conversion (homogenization). The high level of sequence variation makes the 5S NTS an inappropriate DNA sequence for comparisons of closely related taxa.

Journal ArticleDOI
07 May 1998-Oncogene
TL;DR: A highly conserved PTEN processed pseudogene is reported, ψPTEN, which shares over 98% homology with the coding region of functional PTEN, and its localisation to chromosome 9p21.
Abstract: PTEN/MMAC1/TEP1, encoding a dual-specificity phosphatase, is a tumor suppressor gene which has recently been cloned and mapped to chromosome 10q23.3. We have shown that germline mutations of PTEN are present in individuals with two hamartoma syndromes: Cowden Syndrome, associated with a predisposition to breast and thyroid cancers, and Bannayan-Zonana syndrome. Somatic mutations of PTEN have been reported in a variety of human cancer cell lines, suggesting a potential role for this gene in the pathogenesis of human malignancies. We report the identification of a highly conserved PTEN processed pseudogene, ψPTEN, which shares over 98% homology with the coding region of functional PTEN, and its localisation to chromosome 9p21. The high sequence homology of ψPTEN with the PTEN transcript may potentially lead to misinterpretation when performing mutation analyses based on cDNA templates. Caution should be exerted when using such screening approaches.

Journal ArticleDOI
TL;DR: This work has used a novel technique for mutation detection in the duplicated region of PKD1 to identify two patients with a nearly identical cluster of base pair substitutions in exon 23, and shows that these sequence substitutions are also present in N23HA, a rodent-human somatic cell hybrid that contains only thePKD1 homologs.
Abstract: Approximately 70% of the gene responsible for the most common form of autosomal dominant polycystic kidney disease ( PKD1 ) is replicated in several highly homologous copies located more proximally on chromosome 16. We recently have described a novel technique for mutation detection in the duplicated region of PKD1 that circumvents the difficulties posed by these homologs. We have used this method to identify two patients with a nearly identical cluster of base pair substitutions in exon 23. Since pseudogenes are known to be reservoirs for mutation via gene conversion events for a number of other diseases, we decided to test whether these sequence differences in PKD1 could have arisen as a result of this mechanism. Using changes in restriction digest patterns, we were able to show that these sequence substitutions are also present in N23HA, a rodent-human somatic cell hybrid that contains only the PKD1 homologs. Moreover, these changes were also detected in total DNA from several affected and unaffected individuals that did not harbor this mutation in their PKD1 gene copy. This is the first example of gene conversion in PKD1 , and our findings highlight the importance of using gene-specific reagents in defining PKD1 mutations.

Journal ArticleDOI
TL;DR: The tandem duplication reported here is evolutionarily associated with displacement of the origin for light-strand replication from its typical location in vertebrate mitochondrial genomes and loss of the dihydrouridine stem from the tRNA(Cys) gene; these factors implicate light-Strand replicational errors in the tandem duplication of genic regions.
Abstract: A tandem duplication of the mitochondrial tRNA(Thr) and tRNA(Pro) genes in the amphisbaenian reptile Bipes biporus is the first case reported of a tandem duplication restricted to a single pair of tRNA genes in a vertebrate mitochondrial genome. Such duplications have been predicted, however, as intermediate steps in the evolution of observed mitochondrial genomic rearrangements through errors in light-strand replication. The tandem duplication reported here is evolutionarily associated with displacement of the origin for light-strand replication from its typical location in vertebrate mitochondrial genomes and loss of the dihydrouridine stem from the tRNA(Cys) gene; these factors implicate light-strand replicational errors in the tandem duplication of genic regions. Pseudogene formation in tandemly duplicated sequences appears to be an intermediate step in genomic rearrangement. However, formation of pseudogenes in the Bipes mitochondrial genome occurs in a pattern that precludes subsequent genomic rearrangement. Functional constraints placed on cleavage of mitochondrial transcripts by tRNA genes also may prevent mitochondrial genomic rearrangement.

Journal ArticleDOI
TL;DR: Sequence analysis of the duplicated GSTT2 gene has identified an exon 2/intron 2 splice site abnormality and a premature translation stop signal at codon 196, which suggest that the duplicate gene is a pseudogene, and it has been named GSTT 2P.
Abstract: The structure and organization of the human Theta-class glutathione S-transferase (GST) genes have been determined. GSTT1 and GSTT2 are separated by approx. 50 kb. They have a similar structure, being composed of five exons with identical exon/intron boundaries. GSTT1 is 8.1 kb in length, while GSTT2 is only 3.7 kb. The GSTT2 gene lies head-to-head with a gene encoding d-dopachrome tautomerase (DDCT), which extends over 8.5 kb and contains four exons. The sequence between GSTT2 and DDCT may contain a bidirectional promoter. The GSTT2 and DDCT genes have been duplicated in an inverted repeat. Sequence analysis of the duplicated GSTT2 gene has identified an exon 2/intron 2 splice site abnormality and a premature translation stop signal at codon 196. These changes suggest that the duplicate gene is a pseudogene, and it has been named GSTT2P.

Journal ArticleDOI
01 Sep 1998-Genetics
TL;DR: The interspecific comparison has revealed that in the three species of the simulans cluster the CecA2 gene is partially deleted and has therefore lost its function and become a pseudogene; in each of the species, subsequent deleting have accumulated.
Abstract: Approximately 4 kb of the Cecropin cluster region have been sequenced in nine lines of Drosophila melanogaster and one line of the sibling species D. simulans, D. mauritiana , and D. sechellia. This region includes three functional genes ( CecA1, CecA2 , and CecB ), which are involved in the insect immune response, and two pseudogenes ( Cec Ψ 1 and Cec Ψ 2 ). The level of silent polymorphism in the three Cec genes is rather high (0.028), and there is no excess of nonsynonymous polymorphism. There is no evidence of gene conversion in the history of these genes. The interspecific comparison has revealed that in the three species of the simulans cluster the CecA2 gene is partially deleted and has therefore lost its function and become a pseudogene; in each of the species, subsequent deletions have accumulated. Divergence estimates indicate that the Cec Ψ 1 and Cec Ψ 2 pseudogenes are highly diverged, both between themselves and relative to the other three Cec genes. However, both Cec Ψ 1 and Cec Ψ 2 have conserved transcriptional signals and splice sites, and they present an open reading frame; also, correctly spliced transcripts have been detected for both Cec Ψ 1 and Cec Ψ 2. The data support that these genes are either active genes with some null alleles or young pseudogenes.

Journal ArticleDOI
TL;DR: The deep evolutionary divergence between these two Chlamydomonas taxa within the Chlorophyceae suggests that their shared features of mitochondrial genome organization evolved prior to the origin of this group.
Abstract: The complete nucleotide sequence of the Chlamydomonas eugametos (Chlamydomonadales, Chlorophyceae, sensu Mattox and Stewart) mitochondrial genome has been determined (22,897 bp, 34.6% G + C). The genes identified in this circular-mapping genome include those for apocytochrome b, subunit 1 of the cytochrome oxidase complex, subunits 1, 2, 4, 5, and 6 of the NADH dehydrogenase complex, discontinuous large and small subunit ribosomal rRNAs and three tRNAs whose anticodons CAU, CCA and UUG are specific for methionine, tryptophan and glutamine, respectively. The C. eugametos mitochondrial DNA (mtDNA), therefore, shares almost the same reduced set of coding functions and similar unusual features of rRNA gene organization with the linear 15.8 kb mtDNA of Chlamydomonas reinhardtii, the only other completely sequenced chlamydomonadalean mtDNA. However, sequence analysis of the C. eugametos mtDNA has revealed the following distinguishing features relative to those of C. reinhardtii: (1) the absence of a reverse transcriptase-like gene homologue, (2) the presence of an additional gene for tRNA(met) that may be a pseudogene, (3) a completely different gene order, (4) transcription of all genes from the same mtDNA strand, (5) a lower G + C content, (6) less pronounced bias in codon usage, and (7) nine group I introns, several of which contain open reading frames coding for potential maturases/endonucleases and two have a nucleotide at the 5' or 3' splice site of the deduced precursor RNAs that deviates from highly conserved nucleotides reported in other group I introns. The features of mitochondrial genome organization and gene content shared by C. eugametos and C. reinhardtii contrast with those of other green algal mtDNAs that have been characterized in detail. The deep evolutionary divergence between these two Chlamydomonas taxa within the Chlamydomonadales suggests that their shared features of mitochondrial genome organization evolved prior to the origin of this group.

Journal ArticleDOI
TL;DR: CDNA sequences were elucidated for two closely related human genes which encode the precursors of two hitherto unknown aspartic proteinases.

Journal ArticleDOI
TL;DR: The tick-borne relapsing fever spirochete Borrelia hermsii evades the mammalian immune system by periodically switching expression among members of two multigene families that encode immunogenic, antigenically distinct outer surface proteins.
Abstract: The tick-borne relapsing fever spirochete Borrelia hermsii evades the mammalian immune system by periodically switching expression among members of two multigene families that encode immunogenic, antigenically distinct outer surface proteins. The type strain, B. hermsii HS1, has at least 40 complete genes and pseudogenes that participate in this multiphasic antigenic variation. Originally termed vmp (for variable major protein) genes, they have been reclassified as vsp (for variable small protein) and vlp (for variable large protein) genes, based on size and amino acid sequence similarities. To date, antigenic variation in B. hermsii has been studied only in the type strain, HS1. Nucleotide sequence comparisons of 23 B. hermsii HS1 genes revealed five distinct groups, the vsp gene family and four subfamilies of vlp genes. We used PCR with family- and subfamily-specific primers, followed by restriction fragment length polymorphism analysis, to compare the vsp and vlp repertoires of HS1 and seven other B. hermsii isolates from Washington, Idaho, and California. This analysis, together with pulsed-field gel electrophoresis genome profiles, revealed that the eight isolates formed three distinct groups, which likely represent clonal lineages. Members of the three groups coexisted in the same geographic area, but they could also be isolated across large geographical distances. This population structure may result from immune selection by the host, as has been proposed for other pathogens with polymorphic antigens.

Journal ArticleDOI
TL;DR: Evolutionary tree construction reveals an early divergence of hair keratin genes from cytokeratin genes, followed by the segregation of the genes into the three subclusters of tandemly arranged genes.