scispace - formally typeset
Search or ask a question
Topic

Pseudogene

About: Pseudogene is a research topic. Over the lifetime, 5528 publications have been published within this topic receiving 336634 citations. The topic is also known as: Ψ & pseudogenes.


Papers
More filters
Journal ArticleDOI
12 Dec 2003-Science
TL;DR: Partitions of genes into inferred biological classes identified accelerated evolution in several functional classes, including olfaction and nuclear transport and human-accelerated genes are significantly more likely to underlie major known Mendelian disorders.
Abstract: Even though human and chimpanzee gene sequences are nearly 99% identical, sequence comparisons can nevertheless be highly informative in identifying biologically important changes that have occurred since our ancestral lineages diverged. We analyzed alignments of 7645 chimpanzee gene sequences to their human and mouse orthologs. These three-species sequence alignments allowed us to identify genes undergoing natural selection along the human and chimp lineage by fitting models that include parameters specifying rates of synonymous and nonsynonymous nucleotide substitution. This evolutionary approach revealed an informative set of genes with significantly different patterns of substitution on the human lineage compared with the chimpanzee and mouse lineages. Partitions of genes into inferred biological classes identified accelerated evolution in several functional classes, including olfaction and nuclear transport. In addition to suggesting adaptive physiological differences between chimps and humans, human-accelerated genes are significantly more likely to underlie major known Mendelian disorders.

648 citations

Journal ArticleDOI
TL;DR: It is proposed that variation in intragenic repeat number provides the functional diversity of cell surface antigens that, in fungi and other pathogens, allows rapid adaptation to the environment and elusion of the host immune system.
Abstract: Tandemly repeated DNA sequences are highly dynamic components of genomes. Most repeats are in intergenic regions, but some are in coding sequences or pseudogenes. In humans, expansion of intragenic triplet repeats is associated with various diseases, including Huntington chorea and fragile X syndrome. The persistence of intragenic repeats in genomes suggests that there is a compensating benefit. Here we show that in the genome of Saccharomyces cerevisiae, most genes containing intragenic repeats encode cell-wall proteins. The repeats trigger frequent recombination events in the gene or between the gene and a pseudogene, causing expansion and contraction in the gene size. This size variation creates quantitative alterations in phenotypes (e.g., adhesion, flocculation or biofilm formation). We propose that variation in intragenic repeat number provides the functional diversity of cell surface antigens that, in fungi and other pathogens, allows rapid adaptation to the environment and elusion of the host immune system.

617 citations

Journal ArticleDOI
TL;DR: It is shown that the vast majority of nonconserved ORFs present by chance in RNA transcripts are random occurrences, and the results indicate that there has been relatively little true innovation in mammalian protein-coding genes.
Abstract: Although the Human Genome Project was completed 4 years ago, the catalog of human protein-coding genes remains a matter of controversy. Current catalogs list a total of ≈24,500 putative protein-coding genes. It is broadly suspected that a large fraction of these entries are functionally meaningless ORFs present by chance in RNA transcripts, because they show no evidence of evolutionary conservation with mouse or dog. However, there is currently no scientific justification for excluding ORFs simply because they fail to show evolutionary conservation: the alternative hypothesis is that most of these ORFs are actually valid human genes that reflect gene innovation in the primate lineage or gene loss in the other lineages. Here, we reject this hypothesis by carefully analyzing the nonconserved ORFs—specifically, their properties in other primates. We show that the vast majority of these ORFs are random occurrences. The analysis yields, as a by-product, a major revision of the current human catalogs, cutting the number of protein-coding genes to ≈20,500. Specifically, it suggests that nonconserved ORFs should be added to the human gene catalog only if there is clear evidence of an encoded protein. It also provides a principled methodology for evaluating future proposed additions to the human gene catalog. Finally, the results indicate that there has been relatively little true innovation in mammalian protein-coding genes.

616 citations

Journal ArticleDOI
28 Jul 2006-Cell
TL;DR: In this article, the authors used chromosome conformation capture to demonstrate the specific association of an enhancer element, H, on chromosome 14 with multiple OR gene promoters on different chromosomes.

604 citations

Journal ArticleDOI
TL;DR: A recent remarkable transposition of 7.9 kb of a typically 17.0-kb mitochondrial genome to a specific nuclear chromosomal position in the domestic cat is reported, providing an empirical glimpse of historic genomic events that may parallel the accommodation of organelles in eucaryotes.
Abstract: The mitochondrial DNA of plant and animal cells is a transcriptionally active genome that traces its origins to a symbiotic infection of eucaryotic cells by bacterial progenitors. As prescribed by the Serial Endosymbiosis Theory, symbiotic organelles have gradually transferred their genes to the eucaryotic genome, producing a functional interaction of nuclear and mitochondrial genes in organelle function. We report here a recent remarkable transposition of 7.9 kb of a typically 17.0-kb mitochondrial genome to a specific nuclear chromosomal position in the domestic cat. The integrated segment has subsequently become amplified 38–76 times and now occurs as a tandem repeat macrosatellite with multiple-length alleles resolved by pulse-field gel electrophoresis (PFGE) segregating in cat populations. Sequence determination of the nuclear mitochondrial DNA segment, Numt, revealed a d(CA)-rich 8-bp motif [ACACACGT] repeated imperfectly five times at the deletion junction that is a likely target for recombination. The extent and pattern of sequence divergence of Numt genes from the cytoplasmic mtDNA homologues plus the occurrence of Numt in other species of the family Felidae allowed an estimate for the origins of Numt at 1.8–2.0 million years ago in an ancestor of four modern species in the genus Felis. Numt genes do not function in cats; rather, the locus combines properties of nuclear minisatellites and pseudogenes. These observations provide an empirical glimpse of historic genomic events that may parallel the accommodation of organelles in eucaryotes.

603 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
95% related
Genome
74.2K papers, 3.8M citations
93% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022250
2021123
2020160
2019119
2018127