scispace - formally typeset
Search or ask a question
Topic

Pseudogene

About: Pseudogene is a research topic. Over the lifetime, 5528 publications have been published within this topic receiving 336634 citations. The topic is also known as: Ψ & pseudogenes.


Papers
More filters
Journal ArticleDOI
TL;DR: Most CAH alleles thus can easily be classified with this new probing strategy, eliminating many ambiguities resulting from probing with cDNA.
Abstract: Congenital adrenal hyperplasia (CAH) is caused by disorders of the P450c21B gene, which, with the P450c21A pseudogene, lies in the HLA locus on chromosome 6. The near identity of nucleotide sequences and endonuclease cleavage sites in these A and B loci makes genetic analysis of this disease difficult. We used a genomic DNA probe that detects the P450c21 genes (A pseudogene, 3.2 kb; B gene, 3.7 kb in Taq I digests) and the 3' flanking DNA not detected with cDNA probes (A pseudogene, 2.4 kb; B gene, 2.5 kb) to examine Southern blots of genomic DNA from 68 patients and 165 unaffected family members in 57 families with CAH. Of 116 CAH-bearing chromosomes, 114 could be sorted into five easily distinguished haplotypes based on blots of DNA digested with Taq I and Bgl II. Haplotype I (76 of 116, 65.6%) was indistinguishable from normal and therefore bore very small lesions, presumably point mutations. Haplotype II (4 of 116, 3.4%) and haplotype III (8 of 116, 6.9%) had deletions and duplications of the P450c21A pseudogene but had structurally intact P450c21B genes presumably bearing point mutations; point mutation thus was the genetic defect in 88 of 116 chromosomes (75.9%). Haplotypes IV and V lack the 3.7-kb Taq I band normally associated with the P450c21B gene. Haplotype IV (13 of 116, 11.2%) retains all other bands, indicating that the P450c21B gene has undergone a gene conversion event, so that it is now also associated with a 3.2-kb band. Haplotype V (13 of 116, 11.2%) lacks the 2.4-kb Taq I fragment and the 12-kb Bgl II fragments normally associated with the P450c21A pseudogene, as well as lacking the 3.7-kb Taq I fragment, indicating deletion of approximately 30 kb of DNA, resulting in a single hybrid P450c21A/B gene. Most (114 of 116, 98%) CAH alleles thus can easily be classified with this new probing strategy, eliminating many ambiguities resulting from probing with cDNA.

126 citations

Journal Article
TL;DR: The hGH/hCS gene locus was characterized by the localization of at least 27 Alu-type repetitive sequences and identification of three unique sequences in the vicinity of several hGH and hCS genes which define the probable breakpoints of the evolutionary duplication units.
Abstract: Genomic clones containing the closely related genes for human growth hormone (hGH) and chorionic somatomammotropin (hCS) were obtained from genomic bacteriophage lambda and cosmid libraries. The entire GH/CS chromosomal locus was reconstructed utilizing overlapping restriction fragments characterized from the isolated clones. The hGH/hCS locus contains two GH genes and three CS genes spanning 48 kb of DNA in the order: 5'-(hGH-1/hCS-5/hCS-1/hGH-2/hCS-2)-3', confirming analysis of cosmid clones obtained from a different human library (Barsh et al., 1983). To complete the characterization of the hCS genes, the nucleotide sequence of the hCS-5 gene was determined. Sequence analysis revealed a mutation of the 5' splice site at the exon II-intron B boundary, suggesting that the hCS-5 gene is a pseudogene. The nucleotide sequence of an allelic variant of the hCS-2 gene was determined and found to contain a single amino acid substitution and the deletion of a single codon. The hGH/hCS gene locus was further characterized by the localization of at least 27 Alu-type repetitive sequences and identification of three unique sequences in the vicinity of several hGH and hCS genes which define the probable breakpoints of the evolutionary duplication units. These data, combined with the nucleotide sequences of all five GH and CS genes, indicate that the hGH/hCS gene locus has evolved by duplication mechanisms. Evidence for the occurrence of at least one gene conversion event involving the hCS-1 gene precursor and the hCS-2 gene was found, indicating that the hGH/hCS gene locus has evolved by concerted mechanisms. The structure of the hCS genes is discussed in light of recent studies of CS genes from other mammalian species.

126 citations

01 Jan 1995
TL;DR: It is demonstrated that human cells possess an endogenous reverse transcription activity, which is not restricted to transcripts of transposable elements, and which is likely to be involved in the formation, still ongoing, of a large fraction of the eukaryotic genome.
Abstract: Using a sensitive assay for detection of reverse transcription events, we demonstrate that human HeLa cells can ‘retropose’, i.e. reverse transcribe and integrate, the mRNA of a naive reporter gene, at a low but detectable frequency. Furthermore, we show that the retroposed copies have all the hallmarks of the processed pseudogenes naturally found in the mammalian genome: they lack intron and 5′ promoter sequence, they have acquired a 3′ poly(A) tail, and they are flanked by short repeats (< 15 bp) of target DNA sequence. These results demonstrate that human cells possess an endogenous reverse transcription activity, which is not restricted to transcripts of transposable elements, and which is likely to be involved in the formation, still ongoing, of a large fraction of the eukaryotic genome.

126 citations

Journal ArticleDOI
TL;DR: Results provide good evidence for the existence of at least one highly homologous p47-phox pseudogene containing the DeltaGT mutation, which is caused by recombination events between the wild-type gene and the pseudogene(s).
Abstract: The predominant genetic defect causing p47-phox-deficient chronic granulomatous disease (A47 degrees CGD) is a GT deletion (DeltaGT) at the beginning of exon 2. No explanation exists to account for the high incidence of this single mutation causing a rare disease in an unrelated, racially diverse population. In each of 34 consecutive unrelated normal individuals, both the normal and mutant DeltaGT sequences were present in genomic DNA, suggesting that a p47-phox related sequence carrying DeltaGT exists in the normal population. Screening of genomic bacteriophage and YAC libraries identified 13 p47-phox bacteriophage and 19 YAC clones. The GT deletion was found in 11 bacteriophage and 15 YAC clones. Only 5 exonic and 33 intronic differences distinguished all DeltaGT clones from all wild-type clones. The most striking differences were a 30-bp deletion in intron 1 and a 20-bp duplication in intron 2. These results provide good evidence for the existence of at least one highly homologous p47-phox pseudogene containing the DeltaGT mutation. The p47-phox gene and pseudogene(s) colocalize to chromosome 7q11.23. This close linkage, together with the presence within each gene of multiple recombination hot spots, suggests that the predominance of the DeltaGT mutation in A47 degrees CGD is caused by recombination events between the wild-type gene and the pseudogene(s).

126 citations

Journal ArticleDOI
TL;DR: Alsophila spinulosa (Cyatheaceae) is the only tree fern to have a complete chloroplast (cp) genome sequence as mentioned in this paper, which contains a quadripartite structure with the large (LSC, 86,308 bp) and small single copy (SSC, 21,623 bp), regions separated by two copies of an inverted repeat (IRs, 24,365 bp).
Abstract: Ferns have generally been neglected in studies of chloroplast genomics. Before this study, only one polypod and two basal ferns had their complete chloroplast (cp) genome reported. Tree ferns represent an ancient fern lineage that first occurred in the Late Triassic. In recent phylogenetic analyses, tree ferns were shown to be the sister group of polypods, the most diverse group of living ferns. Availability of cp genome sequence from a tree fern will facilitate interpretation of the evolutionary changes of fern cp genomes. Here we have sequenced the complete cp genome of a scaly tree fern Alsophila spinulosa (Cyatheaceae). The Alsophila cp genome is 156,661 base pairs (bp) in size, and has a typical quadripartite structure with the large (LSC, 86,308 bp) and small single copy (SSC, 21,623 bp) regions separated by two copies of an inverted repeat (IRs, 24,365 bp each). This genome contains 117 different genes encoding 85 proteins, 4 rRNAs and 28 tRNAs. Pseudogenes of ycf66 and trnT-UGU are also detected in this genome. A unique trnR-UCG gene (derived from trnR-CCG) is found between rbcL and accD. The Alsophila cp genome shares some unusual characteristics with the previously sequenced cp genome of the polypod fern Adiantum capillus-veneris, including the absence of 5 tRNA genes that exist in most other cp genomes. The genome shows a high degree of synteny with that of Adiantum, but differs considerably from two basal ferns (Angiopteris evecta and Psilotum nudum). At one endpoint of an ancient inversion we detected a highly repeated 565-bp-region that is absent from the Adiantum cp genome. An additional minor inversion of the trnD-GUC, which is possibly shared by all ferns, was identified by comparison between the fern and other land plant cp genomes. By comparing four fern cp genome sequences it was confirmed that two major rearrangements distinguish higher leptosporangiate ferns from basal fern lineages. The Alsophila cp genome is very similar to that of the polypod fern Adiantum in terms of gene content, gene order and GC content. However, there exist some striking differences between them: the trnR-UCG gene represents a putative molecular apomorphy of tree ferns; and the repeats observed at one inversion endpoint may be a vestige of some unknown rearrangement(s). This work provided fresh insights into the fern cp genome evolution as well as useful data for future phylogenetic studies.

125 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
95% related
Genome
74.2K papers, 3.8M citations
93% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022250
2021123
2020160
2019119
2018127