scispace - formally typeset
Search or ask a question
Topic

Pseudogene

About: Pseudogene is a research topic. Over the lifetime, 5528 publications have been published within this topic receiving 336634 citations. The topic is also known as: Ψ & pseudogenes.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel means involving the segmental translocation of a chromosomal region by which the ability to undergo self-fertilization may be acquired is demonstrated.
Abstract: Degenerate PCR and chromosome-walking approaches were used to identify mating-type (MAT) genes and flanking regions from the homothallic (sexually self-fertile) euascomycete fungus Neosartorya fischeri, a close relative of the opportunistic human pathogen Aspergillus fumigatus. Both putative alpha- and high-mobility-group-domain MAT genes were found within the same genome, providing a functional explanation for self-fertility. However, unlike those in many homothallic euascomycetes (Pezizomycotina), the genes were not found adjacent to each other and were termed MAT1 and MAT2 to recognize the presence of distinct loci. Complete copies of putative APN1 (DNA lyase) and SLA2 (cytoskeleton assembly control) genes were found bordering the MAT1 locus. Partial copies of APN1 and SLA2 were also found bordering the MAT2 locus, but these copies bore the genetic hallmarks of pseudogenes. Genome comparisons revealed synteny over at least 23,300 bp between the N. fischeri MAT1 region and the A. fumigatus MAT locus region, but no such long-range conservation in the N. fischeri MAT2 region was evident. The sequence upstream of MAT2 contained numerous candidate transposase genes. These results demonstrate a novel means involving the segmental translocation of a chromosomal region by which the ability to undergo self-fertilization may be acquired. The results are also discussed in relation to their significance in indicating that heterothallism may be ancestral within the Aspergillus section Fumigati.

105 citations

Journal ArticleDOI
TL;DR: The number of small gene conversions that the laboratory has been able to detect leads it to suggest that gene conversions are the consequence of a general mechanism whereby DNA strand invasions enable chromosomes to find their homologues during meiosis.
Abstract: Gene conversion is the non-reciprocal transfer of DNA sequences from one gene to a related gene elsewhere in the genome. Molecular evidence for its occurrence in higher eukaryotes was first described by our laboratory in 1980 in the two linked human foetal $\gamma$ -globin genes. Over a kilobase of DNA was converted in this initial example. Other investigators have since described more examples of gene conversion including some in which the sequence that was transferred is much shorter. We have now accumulated evidence for a series of such small gene conversions in the human foetal globin gene pair. The number of small gene conversions that we have been able to detect leads us to suggest that gene conversions are the consequence of a general mechanism whereby DNA strand invasions enable chromosomes to find their homologues during meiosis.

105 citations

Journal ArticleDOI
TL;DR: Comparison of the feline MHC with the murine and human MHC offers a detailed view of the consequences of genome organization in three mammalian lineages.
Abstract: To study comparative molecular dynamics in the genesis of the major histocompatibility complex (MHC), we determined a complete nucleotide sequence spanning 758,291 bp of the domestic cat (Felis catus) extended and classical class II region. The feline class II MHC includes 44 genes (31 predicted to be expressed) which display DNA sequence homology and ordered gene synteny with human HLA and mouse H2, in extended class II and centromere proximal regions (DM to DO) of the classical class II region. However, remarkable genomic alterations including gene gain and loss plus size differentials of 250 kb are evident in comparisons of the cat class II with those of human and mouse. The cat MHC lacks the entire DQ region and retains only relict pseudogene homologs of DP genes, compensated by expansion and reorganization of seven modern DR genes. Repetitive gene families within the feline MHC comprise 35% of the feline MHC with very different density and abundance of GC levels, SINES, LINES, STRs, and retro-elements from the same repeats in human and mouse MHC. Comparison of the feline MHC with the murine and human MHC offers a detailed view of the consequences of genome organization in three mammalian lineages.

105 citations

Journal ArticleDOI
TL;DR: The extreme rDNA diversity characteristic of many Acropora species is attributed to both the independent evolution of these silenced rDNA types and to the suppressive effects of high sequence diversity on homogenization processes acting on functional loci.
Abstract: One characteristic of Indo-Pacific Acropora spp. is extremely high diversity in rDNA sequences at both the species and individual levels. In order to test the hypothesis that pseudogenes may contribute to this diversity, three kinds of analyses were conducted. First, for A. millepora (the species containing the most diverse suite of rDNA types), RT-PCR was used to determine which 5.8S rDNA types are expressed. Second, as previous studies have indicated that interspecific hybridization has occurred in the genus Acropora and silencing of rDNA loci via nucleolar dominance has been shown in some cases to involve methylation, patterns of variation were examined at methylation-susceptible sites. Third, patterns of substitution at conserved sites (including those that are likely to contribute to secondary structure in rRNA) in the 5.8S rDNA were examined. These analyses consistently indicated that one rDNA sequence type present in a broad range of Indo-Pacific Acropora species is likely to consist predominantly of pseudogenes. Patterns of variation also suggest that species may differ with respect to which rDNA sequence types have been silenced and which are active. These pseudogenes are likely to have arisen as a consequence of the introduction of highly divergent rDNA types into single genomes by interspecific hybridization events, and we attribute the extreme rDNA diversity characteristic of many Acropora species to both the independent evolution of these silenced rDNA types and to the suppressive effects of high sequence diversity on homogenization processes acting on functional loci.

105 citations

Journal ArticleDOI
TL;DR: Using the PET approach for comprehensive transcriptome analysis, the PET mapping strategy presented here promises to be a useful tool in annotating the human genome, especially aberrations in human cancer genomes.
Abstract: Identification of unconventional functional features such as fusion transcripts is a challenging task in the effort to annotate all functional DNA elements in the human genome. Paired-End diTag (PET) analysis possesses a unique capability to accurately and efficiently characterize the two ends of DNA fragments, which may have either normal or unusual compositions. This unique nature of PET analysis makes it an ideal tool for uncovering unconventional features residing in the human genome. Using the PET approach for comprehensive transcriptome analysis, we were able to identify fusion transcripts derived from genome rearrangements and actively expressed retrotransposed pseudogenes, which would be difficult to capture by other means. Here, we demonstrate this unique capability through the analysis of 865,000 individual transcripts in two types of cancer cells. In addition to the characterization of a large number of differentially expressed alternative 5′ and 3′ transcript variants and novel transcriptional units, we identified 70 fusion transcript candidates in this study. One was validated as the product of a fusion gene between BCAS4 and BCAS3 resulting from an amplification followed by a translocation event between the two loci, chr20q13 and chr17q23. Through an examination of PETs that mapped to multiple genomic locations, we identified 4055 retrotransposed loci in the human genome, of which at least three were found to be transcriptionally active. The PET mapping strategy presented here promises to be a useful tool in annotating the human genome, especially aberrations in human cancer genomes.

105 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
95% related
Genome
74.2K papers, 3.8M citations
93% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022250
2021123
2020160
2019119
2018127