scispace - formally typeset
Search or ask a question
Topic

Pseudogene

About: Pseudogene is a research topic. Over the lifetime, 5528 publications have been published within this topic receiving 336634 citations. The topic is also known as: Ψ & pseudogenes.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the loci took place at least eight times between 133 and 10 million years ago.
Abstract: The complete nucleotide sequence of the 957-kb DNA of the human immunoglobulin heavy chain variable (VH) region locus was determined and 43 novel VH segments were identified. The region contains 123 VH segments classifiable into seven different families, of which 79 are pseudogenes. Of the 44 VH segments with an open reading frame, 39 are expressed as heavy chain proteins and 1 as mRNA, while the remaining 4 are not found in immunoglobulin cDNAs. Combinatorial diversity of VH region was calculated to be ∼6,000. Conservation of the promoter and recombination signal sequences was observed to be higher in functional VH segments than in pseudogenes. Phylogenetic analysis of 114 VH segments clearly showed clustering of the VH segments of each family. However, an independent branch in the tree contained a single VH, V4-44.1P, sharing similar levels of homology to human VH families and to those of other vertebrates. Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the locus took place at least eight times between 133 and 10 million years ago. One nonimmunoglobulin gene of unknown function was identified in the intergenic region.

458 citations

Journal ArticleDOI
TL;DR: The putative proteins encoded by CYP11B1 and B2 each contain 503 amino acids including a 24-residue signal peptide and have sequences that are 93% identical to each other and 75% identicalto the predicted sequence of bovine P-450(11) beta.

457 citations

Journal ArticleDOI
TL;DR: All 11 functional genes (ndh genes) for subunits of a putative NADH dehydrogenase that are found in the chloroplast genomes of angiosperms and a bryophyte are lost, raising the possibility that all ndh genes have been transferred to the nucleus or that an NADH dehydration is not essential in black pine chloroplasts.
Abstract: The complete nucleotide sequence (119,707 bp) of the black pine (Pinus thunbergii) chloroplast genome has been determined. It contains 4 rRNA genes and 32 tRNA genes. To our knowledge, the tRNAPro (GGG) gene has not been found in any other chloroplast genome analyzed. Sixty-one genes encoding proteins and 11 conserved open reading frames are also found. Extensive rearrangements are apparent in the chloroplast genome relative to those of other land plants. The most striking feature is the loss of all 11 functional genes (ndh genes) for subunits of a putative NADH dehydrogenase that are found in the chloroplast genomes of angiosperms and a bryophyte. Four ndh genes were completely lost and the other 7 genes remain as obvious pseudogenes. This unexpected finding raises the possibility that all ndh genes have been transferred to the nucleus or that an NADH dehydrogenase is not essential in black pine chloroplasts.

454 citations

Journal ArticleDOI
TL;DR: Analysis of 13 eukaryotic species with sequenced mitochondrial and nuclear genomes reveals a large interspecific variation of NUMT number and size.
Abstract: Mitochondrial DNA sequences are frequently transferred to the nucleus giving rise to the so-called nuclear mitochondrial DNA (NUMT). Analysis of 13 eukaryotic species with sequenced mitochondrial and nuclear genomes reveals a large interspecific variation of NUMT number and size. Copy number ranges from none or few copies in Anopheles, Caenorhabditis, Plasmodium, Drosophila, and Fugu to more than 500 in human, rice, and Arabidopsis. The average size is between 62 (baker's yeast) and 647 bps (Neurospora), respectively. A correlation between the abundance of NUMTs and the size of the nuclear or the mitochondrial genomes, or of the nuclear gene density, is not evident. Other factors, such as the number and/or stability of mitochondria in the germline, or species-specific mechanisms controlling accumulation/loss of nuclear DNA, might be responsible for the interspecific diversity in NUMT accumulation.

450 citations

Journal Article
TL;DR: Important interethnic differences exist in the structure of the CYP2D locus, and they suggest that the frequent distribution of the C188-->T mutation among the CYp2D6Ch genes explains the lower capacity among Chinese to metabolize drugs that are substrates of CYP 2D6, such as antidepressants and neuroleptic agents.
Abstract: Cytochrome P4502D6 (CYP2D6) catalyzes the oxidative metabolism of several clinically important classes of drugs. Many of these have lower metabolic clearance rates among Chinese, compared with Caucasians, and are prescribed at lower doses for Asian patients. We have now evaluated the molecular genetic basis for this interethnic difference in drug metabolism. The CYP2D loci from two Chinese subjects, one homozygous for the XbaI 44-kilobase haplotype and one homozygous for the XbaI 29-kilobase haplotype, were cloned and characterized. Sequence analysis revealed two variant CYP2D6 genes, CYP2D6Ch1 and CYP2D6Ch2, having mutations yielding two and eight amino acid substitutions, respectively. Exon 9 of the CYP2D6Ch2 gene contained a sequence of 49 bases originating from the pseudogene CYP2D7P. In addition, mutations in the 5' flanking region common to both CYP2D6Ch genes were found. To evaluate the origin of the detrimental mutation in the genes, parts of the 5' flanking regions were introduced into a Hep G2/simian virus 40 expression system with chloramphenicol acetyltransferase as a reporter gene, and transfected cells were analyzed for activity. The ability of the upstream regions to bind nuclear factors was also evaluated using gel-shift analysis. Furthermore, several chimeric constructs of the CYP2D6wt and CYP2D6Ch genes were made, inserted into pCMV2 vectors, and expressed in COS-1 cells. A part of the upstream region of base pairs -1407 to -1068 was found to constitute an enhancer element, but the CYP2D6Ch-specific mutations did not influence the chloramphenicol acetyltransferase activity in the expression system. In contrast, expression of the chimeric genes revealed that the detrimental mutation of the CYP2D6Ch genes was C188-->T, causing a Pro34-->Ser amino acid substitution in a region that is a highly conserved in cytochromes P450 belonging to gene families 1 and 2. This substitution caused expression of a more unstable gene product, as evident from comparison of the relative levels of CYP2D6 mRNA, CYP2D6 protein, and bufuralol 1'-hydroxylase activities in pCMV2-CYP2D6-transfected COS-1 cells. Allele-specific polymerase chain reaction analysis of genomic DNA from 90 Chinese individuals revealed that the CYP2D6Ch1 allele was the most common one and its distribution correlated well with a higher metabolic ratio for debrisoquine. These data demonstrate that important interethnic differences exist in the structure of the CYP2D locus, and they suggest that the frequent distribution of the C188-->T mutation among the CYP2D6Ch genes explains the lower capacity among Chinese to metabolize drugs that are substrates of CYP2D6, such as antidepressants and neuroleptic agents.

440 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
95% related
Genome
74.2K papers, 3.8M citations
93% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022250
2021123
2020160
2019119
2018127