scispace - formally typeset
Search or ask a question
Topic

Pseudogene

About: Pseudogene is a research topic. Over the lifetime, 5528 publications have been published within this topic receiving 336634 citations. The topic is also known as: Ψ & pseudogenes.


Papers
More filters
Journal ArticleDOI
TL;DR: By using nuclear extracts from HeLa cells, the promoter of human elongation factor-1 alpha gene could stimulate in vitro transcription better than the adenovirus major late promoter.

327 citations

Journal ArticleDOI
TL;DR: The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction.
Abstract: The mammalian olfactory apparatus is able to recognize and distinguish thousands of structurally diverse volatile chemicals. This chemosensory function is mediated by a very large family of seven-transmembrane olfactory (odorant) receptors encoded by approximately 1,000 genes, the majority of which are believed to be pseudogenes in humans. The strategy of our sequence database mining for full-length, functional candidate odorant receptor genes was based on the high overall sequence similarity and presence of a number of conserved sequence motifs in all known mammalian odorant receptors as well as the absence of introns in their coding sequences. We report here the identification and physical cloning of 347 putative human full-length odorant receptor genes. Comparative sequence analysis of the predicted gene products allowed us to identify and define a number of consensus sequence motifs and structural features of this vast family of receptors. A new nomenclature for human odorant receptors based on their chromosomal localization and phylogenetic analysis is proposed. We believe that these sequences represent the essentially complete repertoire of functional human odorant receptors. The identification and cloning of all functional human odorant receptor genes is an important initial step in understanding receptor-ligand specificity and combinatorial encoding of odorant stimuli in human olfaction.

327 citations

Journal ArticleDOI
TL;DR: A complete listing of all ALDH sequences known to date, along with the evolutionary analysis of the eukaryotic ALDHs are presented.

327 citations

Journal ArticleDOI
TL;DR: The complete nucleotide sequence of the mitochondrial genome of an angiosperm, sugar beet (Beta vulgaris cv TK81-O) is determined and a novel tRNA(Cys) gene (trnC2-GCA) is identified which shows no sequence homology with any tRNAs reported so far in higher plants.
Abstract: We determined the complete nucleotide sequence of the mitochondrial genome of an angiosperm, sugar beet (Beta vulgaris cv TK81-O). The 368 799 bp genome contains 29 protein, five rRNA and 25 tRNA genes, most of which are also shared by the mitochondrial genome of Arabidopsis thaliana, the only other completely sequenced angiosperm mitochondrial genome. However, four genes identified here (namely rps13, trnF-GAA, ccb577 and trnC2-GCA) are missing in Arabidopsis mitochondria. In addition, four genes found in Arabidopsis (ccb228, rpl2, rpl16 and trnY2-GUA) are entirely absent in sugar beet or present only in severely truncated form. Introns, duplicated sequences, additional reading frames and inserted foreign sequences (chloroplast, nuclear and plasmid DNA sequences) contribute significantly to the overall size of the sugar beet mitochondrial genome. Nevertheless, 55.6% of the genome has no obvious features of information. We identified a novel tRNA(Cys) gene (trnC2-GCA) which shows no sequence homology with any tRNA(Cys) genes reported so far in higher plants. Intriguingly, this tRNA gene is actually transcribed into a mature tRNA, whereas the native tRNA(Cys) gene (trnC1-GCA) is most likely a pseudogene.

323 citations

Journal ArticleDOI
11 Feb 2000-Science
TL;DR: The indel spectrum in Laupala crickets, which have a genome size 11 times larger than that of Drosophila, is examined to test the hypothesis that some variation in genome size can be attributed to differences in the patterns of insertion and deletion (indel) mutations among organisms.
Abstract: Eukaryotic genome sizes range over five orders of magnitude. This variation cannot be explained by differences in organismic complexity (the C value paradox). To test the hypothesis that some variation in genome size can be attributed to differences in the patterns of insertion and deletion (indel) mutations among organisms, this study examines the indel spectrum in Laupala crickets, which have a genome size 11 times larger than that of Drosophila. Consistent with the hypothesis, DNA loss is more than 40 times slower in Laupala than in Drosophila.

322 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
95% related
Genome
74.2K papers, 3.8M citations
93% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022250
2021123
2020160
2019119
2018127