scispace - formally typeset
Search or ask a question
Topic

Pseudogene

About: Pseudogene is a research topic. Over the lifetime, 5528 publications have been published within this topic receiving 336634 citations. The topic is also known as: Ψ & pseudogenes.


Papers
More filters
Journal ArticleDOI
TL;DR: Genotyping 51 candidate genes in 189 ethnically diverse humans shows an unprecedented prevalence of segregating pseudogenes, identifying one of the most pronounced cases of functional population diversity in the human genome.
Abstract: Of more than 1,000 human olfactory receptor genes, more than half seem to be pseudogenes. We investigated whether the most recent of these disruptions might still segregate with the intact form by genotyping 51 candidate genes in 189 ethnically diverse humans. The results show an unprecedented prevalence of segregating pseudogenes, identifying one of the most pronounced cases of functional population diversity in the human genome.

216 citations

Journal ArticleDOI
30 Mar 2012-PLOS ONE
TL;DR: This analysis represents the first comprehensive survey of the vertebrate and mammal selenoproteomes, and depicts their evolution along lineages and provides a wealth of information on these selenobroteins and their forms.
Abstract: Background Selenium is an essential trace element in mammals due to its presence in proteins in the form of selenocysteine (Sec). Human genome codes for 25 Sec-containing protein genes, and mouse and rat genomes for 24. Methodology/Principal Findings We characterized the selenoproteomes of 44 sequenced vertebrates by applying gene prediction and phylogenetic reconstruction methods, supplemented with the analyses of gene structures, alternative splicing isoforms, untranslated regions, SECIS elements, and pseudogenes. In total, we detected 45 selenoprotein subfamilies. 28 of them were found in mammals, and 41 in bony fishes. We define the ancestral vertebrate (28 proteins) and mammalian (25 proteins) selenoproteomes, and describe how they evolved along lineages through gene duplication (20 events), gene loss (10 events) and replacement of Sec with cysteine (12 events). We show that an intronless selenophosphate synthetase 2 gene evolved in early mammals and replaced functionally the original multiexon gene in placental mammals, whereas both genes remain in marsupials. Mammalian thioredoxin reductase 1 and thioredoxin-glutathione reductase evolved from an ancestral glutaredoxin-domain containing enzyme, still present in fish. Selenoprotein V and GPx6 evolved specifically in placental mammals from duplications of SelW and GPx3, respectively, and GPx6 lost Sec several times independently. Bony fishes were characterized by duplications of several selenoprotein families (GPx1, GPx3, GPx4, Dio3, MsrB1, SelJ, SelO, SelT, SelU1, and SelW2). Finally, we report identification of new isoforms for several selenoproteins and describe unusually conserved selenoprotein pseudogenes. Conclusions/Significance This analysis represents the first comprehensive survey of the vertebrate and mammal selenoproteomes, and depicts their evolution along lineages. It also provides a wealth of information on these selenoproteins and their forms.

215 citations

Journal ArticleDOI
TL;DR: This work extensively examined the transcriptional activity of the ENCODE pseudogenes and performed systematic series of pseudogene-specific RACE analyses, demonstrating that at least a fifth of the 201 pseudogene are transcribed in one or more cell lines or tissues.
Abstract: Arising from either retrotransposition or genomic duplication of functional genes, pseudogenes are “genomic fossils” valuable for exploring the dynamics and evolution of genes and genomes. Pseudogene identification is an important problem in computational genomics, and is also critical for obtaining an accurate picture of a genome’s structure and function. However, no consensus computational scheme for defining and detecting pseudogenes has been developed thus far. As part of the ENCyclopedia Of DNA Elements (ENCODE) project, we have compared several distinct pseudogene annotation strategies and found that different approaches and parameters often resulted in rather distinct sets of pseudogenes. We subsequently developed a consensus approach for annotating pseudogenes (derived from protein coding genes) in the ENCODE regions, resulting in 201 pseudogenes, two-thirds of which originated from retrotransposition. A survey of orthologs for these pseudogenes in 28 vertebrate genomes showed that a significant fraction (∼80%) of the processed pseudogenes are primate-specific sequences, highlighting the increasing retrotransposition activity in primates. Analysis of sequence conservation and variation also demonstrated that most pseudogenes evolve neutrally, and processed pseudogenes appear to have lost their coding potential immediately or soon after their emergence. In order to explore the functional implication of pseudogene prevalence, we have extensively examined the transcriptional activity of the ENCODE pseudogenes. We performed systematic series of pseudogene-specific RACE analyses. These, together with complementary evidence derived from tiling microarrays and high throughput sequencing, demonstrated that at least a fifth of the 201 pseudogenes are transcribed in one or more cell lines or tissues.

214 citations

Journal ArticleDOI
01 Sep 1998-Genetics
TL;DR: Southern hybridization experiments using mtDNAs purified from multiple akamata individuals showed that the duplicate state of the control region is not a transient or unstable feature found in a particular individual, but that it stably occurs in mitochondrial genomes of the species.
Abstract: The 17,191-bp mitochondrial DNA (mtDNA) of a Japanese colubrid snake, akamata ( Dinodon semicarinatus ), was cloned and sequenced. The snake mtDNA has some peculiar features that were found in our previous study using polymerase chain reaction: duplicate control regions that have completely identical sequences over 1 kbp, translocation of tRNA Leu (UUR) gene, shortened TψC arm for most tRNA genes, and a pseudogene for tRNA Pro . Phylogenetic analysis of amino acid sequences of protein genes suggested an unusually high rate of molecular evolution in the snake compared to other vertebrates. Southern hybridization experiments using mtDNAs purified from multiple akamata individuals showed that the duplicate state of the control region is not a transient or unstable feature found in a particular individual, but that it stably occurs in mitochondrial genomes of the species. This may, therefore, be regarded as an unprecedented example of stable functional redundancy in animal mtDNA. However, some of the examined individuals contain a rather scanty proportion of heteroplasmic mtDNAs with an organization of genes distinct from that of the major mtDNA. The gene organization of the minor mtDNA is in agreement with one of models that we present to account for the concerted evolution of duplicate control regions.

213 citations

Journal ArticleDOI
TL;DR: The large-scale distribution of RP pseudogenes throughout the genome appears to result, chiefly, from random insertions with the numbers on each chromosome, consequently, proportional to its size, with the highest density in GC-intermediate regions of the genome.
Abstract: Mammals have 79 ribosomal proteins (RP). Using a systematic procedure based on sequence-homology, we have comprehensively identified pseudogenes of these proteins in the human genome. Our assignments are available at http://www.pseudogene.org or http://bioinfo.mbb.yale.edu/genome/pseudogene. In total, we found 2090 processed pseudogenes and 16 duplications of RP genes. In relation to the matching parent protein, each of the processed pseudogenes has an average relative sequence length of 97% and an average sequence identity of 76%. A small number (258) of them do not contain obvious disablements (stop codons or frameshifts) and, therefore, could be mistaken as functional genes, and 178 are disrupted by one or more repetitive elements. On average, processed pseudogenes have a longer truncation at the 5' end than the 3' end, consistent with the target-primed-reverse-transcription (TPRT) mechanism. Interestingly, on chromosome 16, an RPL26 processed pseudogene was found in the intron region of a functional RPS2 gene. The large-scale distribution of RP pseudogenes throughout the genome appears to result, chiefly, from random insertions with the numbers on each chromosome, consequently, proportional to its size. In contrast to RP genes, the RP pseudogenes have the highest density in GC-intermediate regions (41%-46%) of the genome, with the density pattern being between that of LINEs and Alus. This can be explained by a negative selection theory as we observed that GC-rich RP pseudogenes decay faster in GC-poor regions. Also, we observed a correlation between the number of processed pseudogenes and the GC content of the associated functional gene, i.e., relatively GC-poor RPs have more processed pseudogenes. This ranges from 145 pseudogenes for RPL21 down to 3 pseudogenes for RPL14. We were able to date the RP pseudogenes based on their sequence divergence from present-day RP genes, finding an age distribution similar to that for Alus. The distribution is consistent with a decline in retrotransposition activity in the hominid lineage during the last 40 Myr. We discuss the implications for retrotransposon stability and genome dynamics based on these new findings.

212 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
95% related
Genome
74.2K papers, 3.8M citations
93% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022250
2021123
2020160
2019119
2018127