scispace - formally typeset
Search or ask a question
Topic

Pseudogene

About: Pseudogene is a research topic. Over the lifetime, 5528 publications have been published within this topic receiving 336634 citations. The topic is also known as: Ψ & pseudogenes.


Papers
More filters
Journal ArticleDOI
TL;DR: Human ORs cover a similar 'receptor space' as the mouse ORs, suggesting that the human olfactory system has retained the ability to recognize a broad spectrum of chemicals even though humans have lost nearly two-thirds of the OR genes as compared to mice.
Abstract: Olfactory receptor (OR) genes are the largest gene superfamily in vertebrates. We have identified the mouse OR genes from the nearly complete Celera mouse genome by a comprehensive data mining strategy. We found 1,296 mouse OR genes (including ∼20% pseudogenes), which can be classified into 228 families. OR genes are distributed in 27 clusters on all mouse chromosomes except 12 and Y. One OR gene cluster matches a known locus mediating a specific anosmia, indicating the anosmia may be due directly to the loss of receptors. A large number of apparently functional 'fish-like' Class I OR genes in the mouse genome may have important roles in mammalian olfaction. Human ORs cover a similar 'receptor space' as the mouse ORs, suggesting that the human olfactory system has retained the ability to recognize a broad spectrum of chemicals even though humans have lost nearly two-thirds of the OR genes as compared to mice.

899 citations

Journal ArticleDOI
TL;DR: The committee's revised version of a nomenclature for protein-coding loci in fish closely parallels the one used for human genetics, but improves on it in several respects.
Abstract: The Fish Genetics Section of the American Fisheries Society established its Nomenclature Committee to develop and promote standardized genetic nomenclatures. Here, following public comments on previously published draft guidelines, we present the committee's revised version of a nomenclature for protein-coding loci in fish. This nomenclature closely parallels the one used for human genetics, but improves on it in several respects. The fish system (1) includes standardized abbreviations for commonly analyzed proteins, and provides formal symbols for gene loci encoding these proteins; (2) specifies typographic conventions for distinguishing between genes and proteins and for identifying alleles; (3) provides for multilocus isozyme systems, isoloci, regulatory loci, and pseudogenes; (4) allows important basic information (such as subcellular distributions of gene products, active substrate isomers, recent gene duplicates, and orthologous relationships among loci) to be specified in gene symbols via ...

834 citations

Journal ArticleDOI
TL;DR: This work analyzed the structural variations, which are the basis of functional diversification, as well as the genomic organization of the S100 family in human and compared it with the S 100 repertoires in mouse and rat, and identified evolutionary related subgroups of S100 proteins within the three species.

824 citations

Journal ArticleDOI
TL;DR: New alignment techniques that can handle large gaps in a robust fashion and discriminate between orthologous and paralogous alignments are developed and provide evidence that ≈2% of the genes in the human/mouse common ancestor have been deleted or partially deleted in the mouse.
Abstract: This study examines genomic duplications, deletions, and rearrangements that have happened at scales ranging from a single base to complete chromosomes by comparing the mouse and human genomes. From whole-genome sequence alignments, 344 large (>100-kb) blocks of conserved synteny are evident, but these are further fragmented by smaller-scale evolutionary events. Excluding transposon insertions, on average in each megabase of genomic alignment we observe two inversions, 17 duplications (five tandem or nearly tandem), seven transpositions, and 200 deletions of 100 bases or more. This includes 160 inversions and 75 duplications or transpositions of length >100 kb. The frequencies of these smaller events are not substantially higher in finished portions in the assembly. Many of the smaller transpositions are processed pseudogenes; we define a “syntenic” subset of the alignments that excludes these and other small-scale transpositions. These alignments provide evidence that ≈2% of the genes in the human/mouse common ancestor have been deleted or partially deleted in the mouse. There also appears to be slightly less nontransposon-induced genome duplication in the mouse than in the human lineage. Although some of the events we detect are possibly due to misassemblies or missing data in the current genome sequence or to the limitations of our methods, most are likely to represent genuine evolutionary events. To make these observations, we developed new alignment techniques that can handle large gaps in a robust fashion and discriminate between orthologous and paralogous alignments.

813 citations

Journal ArticleDOI
TL;DR: It is determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium, and the nucleotide sequence of three linear and seven circular plasmids in this infectious isolate is reported.
Abstract: We have determined that Borrelia burgdorferi strain B31 MI carries 21 extrachromosomal DNA elements, the largest number known for any bacterium. Among these are 12 linear and nine circular plasmids, whose sequences total 610 694 bp. We report here the nucleotide sequence of three linear and seven circular plasmids (comprising 290 546 bp) in this infectious isolate. This completes the genome sequencing project for this organism; its genome size is 1 521 419 bp (plus about 2000 bp of undetermined telomeric sequences). Analysis of the sequence implies that there has been extensive and sometimes rather recent DNA rearrangement among a number of the linear plasmids. Many of these events appear to have been mediated by recombinational processes that formed duplications. These many regions of similarity are reflected in the fact that most plasmid genes are members of one of the genome's 161 paralogous gene families; 107 of these gene families, which vary in size from two to 41 members, contain at least one plasmid gene. These rearrangements appear to have contributed to a surprisingly large number of apparently non-functional pseudogenes, a very unusual feature for a prokaryotic genome. The presence of these damaged genes suggests that some of the plasmids may be in a period of rapid evolution. The sequence predicts 535 plasmid genes ≥300 bp in length that may be intact and 167 apparently mutationally damaged and/or unexpressed genes (pseudogenes). The large majority, over 90%, of genes on these plasmids have no convincing similarity to genes outside Borrelia, suggesting that they perform specialized functions.

811 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
95% related
Genome
74.2K papers, 3.8M citations
93% related
Regulation of gene expression
85.4K papers, 5.8M citations
91% related
Gene expression
113.3K papers, 5.5M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023120
2022250
2021123
2020160
2019119
2018127