scispace - formally typeset
Search or ask a question

Showing papers on "Pseudomonas putida published in 2019"


Journal ArticleDOI
TL;DR: A novel strain NP5 with efficient heterotrophic nitrification, aerobic denitrification and phosphorus accumulation ability was isolated and identified, and the successful expression of key enzymes for nitrogen and phosphorous removal provided additional evidence for possibility of simultaneous nitrification.

118 citations


Journal ArticleDOI
TL;DR: Pseudomonas PS01 could improve the germination rate of Arabidopsis seeds in 150 mM NaCl and may contribute to sustainable crop production by improving plant growth and/or plant tolerance to abiotic stresses.
Abstract: Plant growth-promoting rhizobacteria (PGPR) may contribute to sustainable crop production by improving plant growth and/or plant tolerance to abiotic stresses. Soil salinity, which limits the productivity of crop plants, is one of the major concerns of modern agriculture, especially in countries heavily affected by climate change as Vietnam. Currently, only a few reports have studied local PGPR isolated in Vietnam, particular Pseudomonas. Therefore, our study aimed to isolate and identify a region-specific Pseudomonas strain and evaluate the effects of this strain on germination, growth promotion and gene expression of Arabidopsis thaliana under salt stress. The Pseudomonas named PS01 was isolated from maize rhizosphere collected in Ben Tre province, Vietnam. This strain was identified as a member of the Pseudomonas putida subclade. Pseudomonas PS01 could improve the germination rate of Arabidopsis seeds in 150 mM NaCl. A. thaliana plants inoculated with Pseudomonas PS01 survived under salt stress conditions up to 225 mM NaCl, while all non-inoculated plants were dead above 200 mM NaCl. The transcriptional levels of genes related to stress tolerance showed that only LOX2 was up-regulated, while APX2 and GLYI7 were down-regulated in inoculated plants in comparison to the non-inoculated controls. In turn, RD29A and RD29B did not show any significant changes in their expression profiles.

87 citations


Journal ArticleDOI
TL;DR: A novel approach for accurate, precise and convenient 13C metabolic flux analysis of Pseudomonas putida KT2440 and the human pathogen P. aeruginosa PAO1, which displays a valuable extension of the available set of flux methods for these types of bacteria.

74 citations


Journal ArticleDOI
TL;DR: The genomic and metabolic basis of ethylene glycol metabolism in Pseudomonas putida KT2440 is revealed, which provides insights into the environmental fate of this pollutant, but also enables its utilization as a carbon source for microbial biotechnology.
Abstract: Pollution from ethylene glycol, and plastics containing this monomer, represent a significant environmental problem. The investigation of its microbial metabolism therefore provides insights into the environmental fate of this pollutant and also enables its utilization as a carbon source for microbial biotechnology. Here, we reveal the genomic and metabolic basis of ethylene glycol metabolism in Pseudomonas putida KT2440. Although this strain cannot grow on ethylene glycol as sole carbon source, it can be used to generate growth-enhancing reducing equivalents upon co-feeding with acetate. Mutants that utilize ethylene glycol as sole carbon source were isolated through adaptive laboratory evolution. Genomic analysis of these mutants revealed a central role of the transcriptional regulator GclR, which represses the glyoxylate carboligase pathway as part of a larger metabolic context of purine and allantoin metabolism. Secondary mutations in a transcriptional regulator encoded by PP_2046 and a porin encoded by PP_2662 further improved growth on ethylene glycol in evolved strains, likely by balancing fluxes through the initial oxidations of ethylene glycol to glyoxylate. With this knowledge, we reverse engineered an ethylene glycol utilizing strain and thus revealed the metabolic and regulatory basis that are essential for efficient ethylene glycol metabolism in P. putida KT2440.

71 citations


Journal ArticleDOI
TL;DR: This study builds upon the premise that roots culture distinct bacteria at specific stages of plant growth to benefit of specific microbial services needed at that particular growth stage.
Abstract: Aims This study builds upon the premise that roots culture distinct bacteria at specific stages of plant growth to benefit of specific microbial services needed at that particular growth stage. Accordingly, we hypothesized that the co-inoculation of beneficial microbes with distinct properties at specific stages of plant development would enhance plant performance. Methods and results The chosen microbes were Bacillus pumilus, Bacillus amyloliquefaciens, Bacillus mojavensis and Pseudomonas putida. These microbes were selected based on their specific services ranging from nutrient solubilization, root growth promotion and disease resistance, and were applied to the roots of tomato plants at specific time points when those services were needed the most by the plant. Laboratory and greenhouse studies were conducted to evaluate the effects of co-inoculation at specific stages of development compared to single microbial applications. Conclusion In general, the combination of three microbes gave the highest biomass and yield without the presence of disease. Applications of three microbes showed the highest root/shoot ratio, and applications of four microbes the lowest ratio. Pseudomonas putida significantly increased fruit macronutrient and micronutrient contents. Significance and impact of the study Our studies suggest that co-inoculation of three or four microbes is a good strategy for healthy crop production.

71 citations


Journal ArticleDOI
TL;DR: In this paper, two sludge biochars produced at different temperature (400 and 700°C, denoted as B400 and B700) were incubated with a phosphate-solubilizing microorganism (P. putida)) that is closely involved in soil P turnover.

61 citations


Journal ArticleDOI
TL;DR: Endophytic Pseudomonas putida BP25 and its volatile organic compounds offer an alternative strategy for eco-friendly disease management in agriculture.
Abstract: Black pepper endophytic Pseudomonas putida BP25 produced diverse antimicrobial volatile organic compounds having potential for plant disease management. Chemically synthesised volatiles suc...

55 citations


Journal ArticleDOI
TL;DR: The P. putida strain KT2440 is often described as Generally Regarded as Safe, or GRAS, indicating the strain is safe to use as food additive, but this description is incorrect.
Abstract: Pseudomonas putida is rapidly becoming a workhorse for industrial production due to its metabolic versatility, genetic accessibility and stress-resistance properties. The P. putida strain KT2440 is often described as Generally Regarded as Safe, or GRAS, indicating the strain is safe to use as food additive. This description is incorrect. P. putida KT2440 is classified by the FDA as HV1 certified, indicating it is safe to use in a P1 or ML1 environment.

53 citations


Journal ArticleDOI
TL;DR: Results highlight how conserved metabolic features in a platform bacterium can be rationally reshaped for enhancing physiological traits of interest.

51 citations


Journal ArticleDOI
TL;DR: It was found that use of N-terminal His6-tagged DavB was most suitable for the production of glutaric acid from glucose.

46 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the metabolic segregation of the substrate carbons optimally sustained biosynthetic flux demands and redox balance, and changes in protein abundance partially predicted the metabolic flux changes in cells grown on the glucose:benzoate mixture versus on glucose alone.


Journal ArticleDOI
25 Jun 2019-Mbio
TL;DR: The utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research, demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-NSeq can be used to rapidly validate previous results.
Abstract: Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links, we leveraged random barcode transposon sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle. One of these enzymes, P. putida 5260 (PP_5260), contains a DUF1338 domain, representing a family with no previously described biological function. Our work also identified the recently described coenzyme A (CoA)-independent route of l-lysine degradation that results in metabolization to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of selected pathway enzymes revealed that expression of catabolic genes is highly sensitive to the presence of particular pathway metabolites, implying intensive local and global regulation. This work demonstrated the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as its utility a powerful tool for validating previous research. IMPORTANCE P. putida lysine metabolism can produce multiple commodity chemicals, conferring great biotechnological value. Despite much research, the connection of lysine catabolism to central metabolism in P. putida remained undefined. Here, we used random barcode transposon sequencing to fill the gaps of lysine metabolism in P. putida. We describe a route of 2-oxoadipate (2OA) catabolism, which utilizes DUF1338-containing protein P. putida 5260 (PP_5260) in bacteria. Despite its prevalence in many domains of life, DUF1338-containing proteins have had no known biochemical function. We demonstrate that PP_5260 is a metalloenzyme which catalyzes an unusual route of decarboxylation of 2OA to d-2-hydroxyglutarate (d-2HG). Our screen also identified a recently described novel glutarate metabolic pathway. We validate previous results and expand the understanding of glutarate hydroxylase CsiD by showing that can it use either 2OA or 2KG as a cosubstrate. Our work demonstrated that biological novelty can be rapidly identified using unbiased experimental genetics and that RB-TnSeq can be used to rapidly validate previous results.

Journal ArticleDOI
TL;DR: The results emphasize the prolonged persistence of P. putida and RP4 in natural soil microcosms, and highlight the potential risks of increased spread potential of plasmid and broader range of host bacteria in disseminating ARGs in soil.
Abstract: Plasmid conjugation is one of the dominant mechanisms of horizontal gene transfer, playing a noticeable role in the rapid spread of antibiotic resistance genes (ARGs). Broad host range plasmids are known to transfer to diverse bacteria in extracted soil bacterial communities when evaluated by filter mating incubation. However, the persistence and dissemination of broad range plasmid in natural soil has not been well studied. In this study, Pseudomonas putida with a conjugative antibiotic resistance plasmid RP4 was inoculated into a soil microcosm, the fate and persistence of P. putida and RP4 were monitored by quantitative PCR. The concentrations of P. putida and RP4 both rapidly decreased within 15-day incubation. P. putida then decayed at a significantly lower rate during subsequent incubation, however, no further decay of RP4 was observed, resulting in an elevated RP4/P. putida ratio (up to 10) after 75-day incubation, which implied potential transfer of RP4 to soil microbiota. We further sorted RP4 recipient bacteria from the soil microcosms by fluorescence-activated cell sorting. Spread of RP4 increased during 75-day microcosm operation and was estimated at around 10-4 transconjugants per recipient at the end of incubation. Analysis of 16S rRNA gene sequences of transconjugants showed that host bacteria of RP4 were affiliated to more than 15 phyla, with increased diversity and shift in the composition of host bacteria. Proteobacteria was the most dominant phylum in the transconjugant pools. Transient transfer of RP4 to some host bacteria was observed. These results emphasize the prolonged persistence of P. putida and RP4 in natural soil microcosms, and highlight the potential risks of increased spread potential of plasmid and broader range of host bacteria in disseminating ARGs in soil.

Journal ArticleDOI
TL;DR: Results show that NH4+ can be transformed into N2O via NO by Y-9 under aerobic conditions without NH2OH as intermediate, andGene amplification and enzyme assays demonstrated that ammonia monooxygenase doesn't exist in Y- 9.

Journal ArticleDOI
TL;DR: Investigation of the effect of GO nano-particles on Pseudomonas putida KT2440 biofilm of variable age showed that susceptibility of P. putida biofilm to GO varied according to age which may be due to changes in the physiological state of cells during maturation.
Abstract: Graphene oxide (GO) has been reported to possess antibacterial activity; therefore, its accumulation in the environment could affect microbial communities such as biofilms. The susceptibility of biofilms to antimicrobials is known to depend on the stage of biofilm maturity. The aim of this study was to investigate the effect of GO nano-particles on Pseudomonas putida KT2440 biofilm of variable age. FT-IR, UV-vis, and Raman spectroscopy confirmed the oxidation of graphene while XPS confirmed the high purity of the synthesised GO over 6 months. Biofilms varying in maturity (24, 48, and 72 h) were formed using a CDC reactor and were treated with GO (85 μg/mL or 8.5 μg/mL). The viability of P. putida was monitored by culture on media and the bacterial membrane integrity was assessed using flow cytometry. P. putida cells were observed using confocal microscopy and SEM. The results showed that GO significantly reduced the viability of 48-h biofilm and detached biofilm cells associated with membrane damage while the viability was not affected in 24- and 72-h biofilms and detached biofilm cells. The results showed that susceptibility of P. putida biofilm to GO varied according to age which may be due to changes in the physiological state of cells during maturation. Graphical abstract.

Journal ArticleDOI
TL;DR: Electrolysis of Pseudomonas putida KT2440 indicated that acetate could be a potential substrate for biochemical production of mcl-PHA by engineered P. putida, a promising carbon source to achieve cost-effective microbial processes.
Abstract: Pseudomonas putida was metabolically engineered to produce medium chain length polyhydroxyalkanoate (mcl-PHA) from acetate, a promising carbon source to achieve cost-effective microbial processes. As acetate is known to be harmful to cell growth, P. putida KT2440 was screened from three Pseudomonas strains (P. putida KT2440, P. putida NBRC14164, and P. aeruginosa PH1) as the host with the highest tolerance to 10 g/L of acetate in the medium. Subsequently, P. putida KT2440 was engineered by amplifying the acetate assimilation pathway, including overexpression of the acs (encoding acetyl-CoA synthetase) route and construction of the ackA-pta (encoding acetate kinase-phosphotransacetylase) pathway. The acs overexpressing P. putida KT2440 showed a remarkable increase of mcl-PHA titer (+ 92%), mcl-PHA yield (+ 50%), and cellular mcl-PHA content (+ 43%) compared with the wild-type P. putida KT2440, which indicated that acetate could be a potential substrate for biochemical production of mcl-PHA by engineered P. putida.

Journal ArticleDOI
TL;DR: By knocking out the tctA gene, encoding for an enzyme of the tripartite carboxylate transport system, an enhanced intracellular level of mcl-PHA was found in the engineered strain when grown on fatty acids.

Journal ArticleDOI
26 Apr 2019-iScience
TL;DR: Overexpression of single-stranded DNA-binding protein enhanced recombineering in several contexts including RecET recombination in E. coli and the utility of these systems was demonstrated by engineering P. aeruginosa genomes to create an attenuated rhamnolipid producer.

Journal ArticleDOI
TL;DR: The results indicate that the bacterium changes significantly the configuration of its metabolism during the early, mid and late exponential phases of growth, highlighting the dynamism and flexibility of P. putida metabolism.
Abstract: Pseudomonas putida is a soil bacterium with a versatile and robust metabolism. When confronted with mixtures of carbon sources, it prioritizes the utilization of the preferred compounds, optimizing metabolism and growth. This response is particularly strong when growing in a complex medium such as LB. This work examines the changes occurring in P. putida KT2440 metabolic fluxes, while it grows exponentially in LB medium and sequentially consumes the compounds available. Integrating the uptake rates for each compound at three different moments during the exponential growth with the changes observed in the proteome, and with the metabolic fluxes predicted by the iJN1411 metabolic model for this strain, allowed the metabolic rearrangements that occurred to be determined. The results indicate that the bacterium changes significantly the configuration of its metabolism during the early, mid and late exponential phases of growth. Sugars served as an energy source during the early phase and later as energy and carbon source. The configuration of the tricarboxylic acids cycle varied during growth, providing no energy in the early phase, and turning to a reductive mode in the mid phase and to an oxidative mode later on. This work highlights the dynamism and flexibility of P. putida metabolism.

Journal ArticleDOI
TL;DR: The results of anti-biofilm activity by MEP assay proved that the green synthesized ZnO NPs showed very potent activity against the tested microbial biofilms, which proves the presence of remains of carbohydrates and amino acids from the bacterial culture used that is responsible for the formation of nanoparticle as well as for its stabilization.
Abstract: In the present work we demonstrated an environmentally acceptable biogenic synthesis of ZnO NPs using Pseudomonas putida (MCC 2989) broth culture. The physiochemical and morphological characters of the synthesized ZnO NPs was confirmed using UV–vis spectroscopy, XRD, SEM-EDX, and FTIR. The anti biofilm and anti bacterial activity of the synthesized ZnO NPs were studied against Pseudomonas otitidis (MCC 2509), Pseudomonas oleovorans (MCC 2566), Acinetobacter baumannii (MCC 2366), Bacillus cereus (MCC, 2039), and Enterococcus faecalis (MCC, 2041) using MTP and disk diffusion assay. The UV–Vis spectra show maximum absorbance of 300 and 310 nm for supernatant and isolated ZnO pellet, respectively, with a corresponding band gap of 4.00 eV. The FTIR results show the evidence for the presence of C O, CH, and NH2 groups, which proves the presence of remains of carbohydrates and amino acids from the bacterial culture used that is responsible for the formation of nanoparticle as well as for its stabilization. The results of anti-biofilm activity by MEP assay proved that the green synthesized ZnO NPs showed very potent activity against the tested microbial biofilms. Further, the ZnO NPs possess great anti microbial activity against the tested gram (+) and gram (−) ve microbes.

Journal ArticleDOI
Lu Lin1, Lu Lin2, Xiaopeng Wang2, Lanfang Cao2, Meiying Xu 
TL;DR: Genomic and proteomic analyses suggested that two B subfamily dye-decolorizing peroxidases (DypBs) were prominent in lignin depolymerization, while the classic O2 -dependent ring cleavage strategy was utilized in central pathways to catabolize lignIn-derived aromatic compounds that were funnelled by peripheral pathways.
Abstract: Lignin is one of the largest carbon reservoirs in the environment, playing an important role in the global carbon cycle. However, lignin degradation in bacteria, especially non-model organisms, has not been well characterized either enzymatically or genetically. Here, a lignin-degrading bacterial strain, Pseudomonas putida A514, was used as the research model. Genomic and proteomic analyses suggested that two B subfamily dye-decolorizing peroxidases (DypBs) were prominent in lignin depolymerization, while the classic O2 -dependent ring cleavage strategy was utilized in central pathways to catabolize lignin-derived aromatic compounds that were funnelled by peripheral pathways. These enzymes, together with a range of transporters, sequential and expression-dose dependent regulation and stress response systems coordinated for lignin metabolism. Catalytic assays indicated these DypBs show unique Mn2+ independent lignin depolymerization activity, while Mn2+ oxidation activity is absent. Furthermore, a high synergy between DypB enzymes and A514 cells was observed to promote cell growth (5 × 1012 cfus/ml) and lignin degradation (27%). This suggested DypBs are competitive lignin biocatalysts and pinpointed limited extracellular secretion capacity as the rate-limiting factor in bacterial lignin degradation. DypB production was, therefore, optimized in recombinant strains and a 14,141-fold increase in DypB activity (56,565 U/l) was achieved, providing novel insights for lignin bioconversion.

Journal ArticleDOI
TL;DR: High cell density cultivation is essential for the majority of industrial processes, and this bioprocess represents an excellent basis for the industrial conversion of WCO into biodegradable polymer polyhydroxyalkanoate (PHA).
Abstract: Waste cooking oil (WCO) is a major pollutant, primarily managed through incineration. The high cell density bioprocess developed here allows for better use of this valuable resource since it allows the conversion of WCO into biodegradable polymer polyhydroxyalkanoate (PHA). WCO was chemically hydrolysed to give rise to a mixture of fatty acids identical to the fatty acid composition of waste cooking oil. A feed strategy was developed to delay the stationary phase, and therefore achieve higher final biomass and biopolymer (PHA) productivity. In fed batch (pulse feeding) experiments Pseudomonas putida KT2440 achieved a PHA titre of 58 g/l (36.4% of CDW as PHA), a PHA volumetric productivity of 1.93 g/l/h, a cell density of 159.4 g/l, and a biomass yield of 0.76 g/g with hydrolysed waste cooking oil fatty acids (HWCOFA) as the sole substrate. This is up to 33-fold higher PHA productivity compared to previous reports using saponified palm oil. The polymer (PHA) was sticky and amorphous, most likely due to the long chain monomers acting as internal plasticisers. High cell density cultivation is essential for the majority of industrial processes, and this bioprocess represents an excellent basis for the industrial conversion of WCO into PHA.

Journal ArticleDOI
TL;DR: A simple digitalizer module is modelled and implemented that completely suppresses the basal level of otherwise strong promoters in such a way that expression in the absence of induction is entirely impeded, suggesting that mobile elements are a major source of circuit inactivation in vivo.
Abstract: While prokaryotic promoters controlled by signal-responding regulators typically display a range of input/output ratios when exposed to cognate inducers, virtually no naturally occurring cases are known to have an OFF state of zero transcription-as ideally needed for synthetic circuits. To overcome this problem, we have modelled and implemented a simple digitalizer module that completely suppresses the basal level of otherwise strong promoters in such a way that expression in the absence of induction is entirely impeded. The circuit involves the interplay of a translation-inhibitory sRNA with the translational coupling of the gene of interest to a repressor such as LacI. The digitalizer module was validated with the strong inducible promoters Pm (induced by XylS in the presence of benzoate) and PalkB (induced by AlkS/dicyclopropyl ketone) and shown to perform effectively in both Escherichia coli and the soil bacterium Pseudomonas putida. The distinct expression architecture allowed cloning and conditional expression of, e.g. colicin E3, one molecule of which per cell suffices to kill the host bacterium. Revertants that escaped ColE3 killing were not found in hosts devoid of insertion sequences, suggesting that mobile elements are a major source of circuit inactivation in vivo.

Journal ArticleDOI
TL;DR: Results provide a promising strategy for optimization of lignin to PHA yields and showed that PHA contained six hydroxyl fatty acid monomers under nitrogen-limited conditions, while two monomers were identified under nitrogen surplus conditions.

Journal ArticleDOI
TL;DR: The recombinant P. putida KT2440 strains presented here as flexible microbial biocatalysts to convert lignocellulosic sugars will undoubtedly contribute to the economic feasibility of the production of valuable compounds derived from renewable feedstock.
Abstract: Lignocellulosic biomass is the most abundant bioresource on earth containing polymers mainly consisting of d‐glucose, d‐xylose, l‐arabinose, and further sugars. In order to establish this alternative feedstock apart from applications in food, we engineered Pseudomonas putida KT2440 as microbial biocatalyst for the utilization of xylose and arabinose in addition to glucose as sole carbon sources. The d‐xylose‐metabolizing strain P. putida KT2440_xylAB and l‐arabinose‐metabolizing strain P. putida KT2440_araBAD were constructed by introducing respective operons from Escherichia coli. Surprisingly, we found out that both recombinant strains were able to grow on xylose as well as arabinose with high cell densities and growth rates comparable to glucose. In addition, the growth characteristics on various mixtures of glucose, xylose, and arabinose were investigated, which demonstrated the efficient co‐utilization of hexose and pentose sugars. Finally, the possibility of using lignocellulose hydrolysate as substrate for the two recombinant strains was verified. The recombinant P. putida KT2440 strains presented here as flexible microbial biocatalysts to convert lignocellulosic sugars will undoubtedly contribute to the economic feasibility of the production of valuable compounds derived from renewable feedstock.

Journal ArticleDOI
TL;DR: The reported process constitutes a proof-of-principle for using bio-oil as a potential cost-effective alternative carbon source in a future bio-based economy.
Abstract: In many cases in industrial biotechnology, substrate costs make up a major part of the overall production costs. One strategy to achieve more cost-efficient processes in general is to exploit cheaper sources of substrate. Small organic acids derived from fast pyrolysis of lignocellulosic biomass represent a significant proportion of microbially accessible carbon in bio-oil. However, using bio-oil for microbial cultivation is a highly challenging task due to its strong adverse effects on microbial growth as well as its complex composition. In this study, the suitability of bio-oil as a substrate for industrial biotechnology was investigated with special focus on organic acids. For this purpose, using the example of the genetically engineered, non-pathogenic bacterium Pseudomonas putida KT2440 producing mono-rhamnolipids, cultivation on small organic acids derived from fast pyrolysis of lignocellulosic biomass, as well as on bio-oil fractions, was investigated and evaluated. As biosurfactants, rhamnolipids represent a potential bulk product of industrial biotechnology where substitution of traditional carbon sources is of conceivable interest. Results suggest that maximum achievable productivities as well as substrate-to-biomass yields are in a comparable range for glucose, acetate, as well as the mixture of acetate, formate and propionate. Similar yields were obtained for a pretreated bio-oil fraction, which was used as reference real raw material, although with significantly lower titers. As such, the reported process constitutes a proof-of-principle for using bio-oil as a potential cost-effective alternative carbon source in a future bio-based economy.

Journal ArticleDOI
TL;DR: This work identified two proteins involved in guaiacol demethylation by the actinomycete Rhodococcus rhodochrous involved in softwood lignin depolymerization processes and constructed four different polycistronic operons carrying combinations of putative redox partners of this guaiACol dem methylation system.
Abstract: A diversity of softwood lignin depolymerization processes yield guaiacol as the main low molecular weight product. This key aromatic compound can be utilized as a carbon source by several microbial species, most of which are Gram positive bacteria. Microbial degradation of guaiacol is known to proceed initially via demethylation to catechol, and this reaction is catalyzed by cytochrome P450 monooxygenases. These enzymes typically require a set of redox partner proteins, whose number and identities were not described until very recently in the case of guaiacol. In this work we identified two proteins involved in guaiacol demethylation by the actinomycete Rhodococcus rhodochrous. Additionally, we constructed four different polycistronic operons carrying combinations of putative redox partners of this guaiacol demethylation system in an inducible expression plasmid that was introduced into the Gram negative host Pseudomonas putida EM42, and the guaiacol consumption dynamics of each resulting strain were analyzed. All the polycistronic operons, expressing a cytochrome P450 together with a putative ferredoxin reductase from R. rhodochrous and putative ferredoxins from R. rhodochrous or Amycolatopsis ATCC 39116 enabled P. putida EM42 to metabolize and grow on guaiacol as the sole carbon source.

Journal ArticleDOI
TL;DR: By combining two incompatible CRISPR plasmids with different antibiotic selection markers, it is shown that the procedure can be cycled to implement consecutive deletions in the same strain, e.g. deletion of the pyrF gene following that of the edd mutant.
Abstract: Implementation of single-stranded DNA (ssDNA) recombineering in Pseudomonas putida has widened the range of genetic manipulations applicable to this biotechnologically relevant bacterium. Yet, the relatively low efficiency of the technology hampers identification of mutated clones lacking conspicuous phenotypes. Fortunately, the use of CRISPR/Cas9 as a device for counterselection of wild-type sequences helps to overcome this limitation. Merging ssDNA recombineering with CRISPR/Cas9 thus enables a suite of genomic edits with a straightforward approach: a CRISPR plasmid provides the spacer DNA sequence that directs the Cas9 nuclease ribonucleoprotein complex to cleave the genome at the wild-type sequences that have not undergone the change entered by the mutagenic ssDNA oligonucleotide(s). This protocol describes a complete workflow of the method optimized for P. putida, although it could in principle be applicable to many other pseudomonads. As an example, we show the deletion of the edd gene that encodes one key enzyme that operates the EDEMP cycle for glucose metabolism in P. putida EM42. By combining two incompatible CRISPR plasmids with different antibiotic selection markers, we show that the procedure can be cycled to implement consecutive deletions in the same strain, e.g. deletion of the pyrF gene following that of the edd mutant. This approach adds to the wealth of genetic technologies available for P. putida and strengthens its status as a chassis of choice for a suite of biotechnological applications.

Journal ArticleDOI
TL;DR: Comparison of sawdust and alginate as carriers for degradation of phenol at high concentrations demonstrated that sawdust improved biodegrades better, and immobilized P53 into sawdust entrapped in sodium-alginate beads can be used for biodegradation purposes.