scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results show that P. putida synthesizes at least two distinct chemoreceptors for aromatic acids, and DL-mandelate was an effective attractant in capillary assays, but additional experiments indicated that the cells were actually responding to benzoylformate, a metabolite formed from mandelate.
Abstract: A quantitative capillary assay was used to show that aromatic acids, compounds that are chemorepellents for Escherichia coli and Salmonella sp., are chemoattractants for Pseudomonas putida PRS2000. The most effective attractants were benzoate; p-hydroxybenzoate; the methylbenzoates; m-, p-, and o-toluate; salicylate; DL-mandelate; beta-phenylpyruvate; and benzoylformate. The chemotactic responses to these compounds were inducible. Taxis to benzoate and m-toluate was induced by beta-ketoadipate, a metabolic intermediate formed when benzoate is dissimilated via enzymes specified by chromosomal genes. Benzoylformate taxis was induced by benzoylformate and L(+)-mandelate. Taxis to mandelate, benzoylformate, and beta-phenylpyruvate was exhibited by cells grown on mandelate, but not by cells grown on benzoate. Cells grown on benzoate were chemotactic to benzoate, the toluates, p-hydroxybenzoate, and salicylate. These results show that P. putida synthesizes at least two distinct chemoreceptors for aromatic acids. Although DL-mandelate was an effective attractant in capillary assays, additional experiments indicated that the cells were actually responding to benzoylformate, a metabolite formed from mandelate. With the exception of mandelate taxis, chemotaxis to aromatic acids was not dependent on the expression of pathways for aromatic degradation. Therefore, the tactic responses exhibited by cells cannot be attributed to an effect of the oxidation of aromatic acids on the energy metabolism of cells.

105 citations

Journal ArticleDOI
TL;DR: The hybrid pathway for chlorobenzoate metabolism was studied in WR211 and WR216, which were derived from Pseudomonas sp.
Abstract: The hybrid pathway for chlorobenzoate metabolism was studied in WR211 and WR216, which were derived from Pseudomonas sp. B13 by acquisition of TOL plasmid pWW0 from Pseudomonas putida mt-2. Chlorobenzoates are utilized readily by these strains when meta cleavage of chlorocatechols is suppressed. When WR211 utilizes 3-chlorobenzoate (3CB), the expression of catechol 2,3-dioxygenase (C23O) and the catabolic activities for chloroaromatics via the ortho pathway coexist as a consequence of inactivation of the meta cleavage activity by 3-chlorocatechol. Utilization of 4-chlorobenzoate (4CB) by WR216 presupposes the suppression of C23O by a spontaneous mutation in the structural gene, so that 4-chlorocatechol is not misrouted into the meta pathway. Such C23O- mutants were also selected when WR211 was grown continuously on 3CB. Our data explain why the phenotypic characters 3CB+ and Mtol+ (m-toluate) are compatible, whereas 4CB+ and Mtol+ are incompatible.

105 citations

Journal ArticleDOI
TL;DR: Pseudomonas putida MnB1 is an isolate from an Mn oxide-encrusted pipeline that can oxidize Mn(II) to Mn oxides and could be recovered in a c-type cytochrome biogenesis-defective mutant by complementation of the mutation.
Abstract: Pseudomonas putida MnB1 is an isolate from an Mn oxide-encrusted pipeline that can oxidize Mn(II) to Mn oxides. We used transposon mutagenesis to construct mutants of strain MnB1 that are unable to oxidize manganese, and we characterized some of these mutants. The mutants were divided into three groups: mutants defective in the biogenesis of c-type cytochromes, mutants defective in genes that encode key enzymes of the tricarboxylic acid cycle, and mutants defective in the biosynthesis of tryptophan. The mutants in the first two groups were cytochrome c oxidase negative and did not contain c-type cytochromes. Mn(II) oxidation capability could be recovered in a c-type cytochrome biogenesis-defective mutant by complementation of the mutation.

105 citations

Journal ArticleDOI
TL;DR: A 9,233-bp HindIII fragment of the aromatic amine catabolic plasmid pTDN1, isolated from a derivative of Pseudomonas putida mt-2, confers the ability to degrade aniline on P. putida KT2442, and two genes, tdnQ and tdnT, which may be involved in amino group transfer, are localized upstream of the putative oxygenase genes.
Abstract: A 9,233-bp HindIII fragment of the aromatic amine catabolic plasmid pTDN1, isolated from a derivative of Pseudomonas putida mt-2 (UCC22), confers the ability to degrade aniline on P. putida KT2442. The fragment encodes six open reading frames which are arranged in the same direction. Their 5' upstream region is part of the direct-repeat sequence of pTDN1. Nucleotide sequence of 1.8 kb of the repeat sequence revealed only a single base pair change compared to the known sequence of IS1071 which is involved in the transposition of the chlorobenzoate genes (C. Nakatsu, J. Ng, R. Singh, N. Straus, and C. Wyndham, Proc. Natl. Acad. Sci. USA 88:8312-8316, 1991). Four open reading frames encode proteins with considerable homology to proteins found in other aromatic-compound degradation pathways. On the basis of sequence similarity, these genes are proposed to encode the large and small subunits of aniline oxygenase (tdnA1 and tdnA2, respectively), a reductase (tdnB), and a LysR-type regulatory gene (tdnR). The putative large subunit has a conserved [2Fe-2S]R Rieske-type ligand center. Two genes, tdnQ and tdnT, which may be involved in amino group transfer, are localized upstream of the putative oxygenase genes. The tdnQ gene product shares about 30% similarity with glutamine synthetases; however, a pUC-based plasmid carrying tdnQ did not support the growth of an Escherichia coli glnA strain in the absence of glutamine. TdnT possesses domains that are conserved among amidotransferases. The tdnQ, tdnA1, tdnA2, tdnB, and tdnR genes are essential for the conversion of aniline to catechol.

105 citations

Journal ArticleDOI
TL;DR: It is concluded that PupA is a specific receptor for ferric pseudobactin 358, and that strain WCS358 produces at least one other receptor for other pseudobactsins.
Abstract: Summary The initial step in the uptake of iron via ferric pseudobactin by the plant-growth-promoting Pseudomonas putida strain WCS358 is binding to a specific outer-membrane protein. The nucleotide sequence of the pupA structural gene, which codes for a ferric pseudobactin receptor, was determined. It contains a single open reading frame which potentially encodes a polypeptide of 819 amino acids, including a putative N-terminal signal sequence of 47 amino acids. Significant homology, concentrated in four boxes, was found with the TonB-dependent receptor proteins of Escherichia coli. The pupA mutant MH100 showed a residual efficiency of 30% in the uptake of 55HFe3+ complexed to pseudobactin 358, whereas the iron uptake of four other pseudobactins was not reduced at all. Cells of strain WCS374 supplemented with the pupA gene of strain WCS358 could transport ferric pseudobactin 358 but showed no affinity for three other pseudobactins. It is concluded that PupA is a specific receptor for ferric pseudobactin 358, and that strain WCS358 produces at least one other receptor for other pseudobactins.

105 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206