scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Biodegradability of aqueous solutions of the herbicide alachlor and the fungicide pyrimethanil, partly treated by photo-Fenton, and the effect of photoreaction intermediates on growth and DOC removal kinetics of the bacteria Pseudomonas putida CECT 324 are demonstrated.

74 citations

Journal ArticleDOI
TL;DR: Comparison of the DNA content of bacteria at different stages of the growth curve, in batch culture in L-broth and in M9-minimal medium, suggests that the par genes are particularly important for chromosome partitioning when cell division reduces the chromosome copy number per cell from two to one.
Abstract: The proteins encoded by chromosomal homologues of the parA and parB genes of many bacterial plasmids have been implicated in chromosome partitioning. Unlike their plasmid counterparts, mutant phenotypes produced by deleting these genes have so far been elusive or weakly expressed, except during sporulation. Here the properties of Pseudomonas putida strains with mutations in parA and parB are described. These mutants do not give rise to elevated levels of anucleate bacteria when grown in rich medium under standard conditions. However, in M9-minimal medium different parA and parB mutations gave between 5 and 10% anucleate cells during the transition from exponential phase to stationary phase. Comparison of the DNA content of bacteria at different stages of the growth curve, in batch culture in L-broth and in M9-minimal medium, suggests that the par genes are particularly important for chromosome partitioning when cell division reduces the chromosome copy number per cell from two to one. This transition occurs in P. putida during the entry into stationary phase in M9-minimal medium, but not in L-broth. It is proposed that the partition apparatus is important to ensure proper chromosome segregation primarily when the bacteria are undergoing cell division in the absence of ongoing DNA replication.

74 citations

Journal ArticleDOI
TL;DR: In vivo high-throughput analysis of single-gene P. putida KT2440 knockouts provides relevant insights into the metabolic cross-road of biosynthetic pathways in this microorganism, as well as valuable information for the fine tuning of current in silico metabolic models.
Abstract: Summary In silico models for Pseudomonas putida KT2440 metabolism predict 68 genes to be essential for growth on minimal medium. In this study a genome-wide collection of single-gene P. putida KT2440 knockouts was generated by mini-Tn5 transposon mutagenesis and used to identify genes essential for growth in minimal medium with glucose. Our screening of the knockout library allowed us to rescue mutants for 48 different knockouts that were conditionally essential for growth on minimal medium. The in vivo screening showed that 24 of these mutants had a insertion in genes proposed to be conditionally essential based on in silico models, whereas another 24 newly implicated conditionally essential genes have been found. For 10 of the in silico proposed conditionally essential genes not found in the screening, knockout mutants were available at the Pseudomonas Reference Culture Collection. These mutants were tested for conditional growth on minimal medium, but none of them was shown to be essential, suggesting that the in silico proposal was inaccurate. Among the set of identified conditionally essential genes were a number of genes involved in the biosynthesis of certain amino acids and vitamins. Auxotrophs for all amino acids predicted by the in silico models were found and, in addition, we also found auxotrophs for proline, serine, threonine and methionine, as well as auxotrophs for biotin, nicotinate and vitamin B12 that were not predicted in silico. Metabolic tests were performed to validate the mutants' phenotypes. Auxotrophies for l-Arg, l-Leu, l-Pro and l-Cys were bypassed by external addition of the corresponding d-amino acids, suggesting the existence of number of d- to l-amino acid racemases encoded by the KT2440 genome. Therefore, the in vivo high-throughput analysis presented here provides relevant insights into the metabolic cross-road of biosynthetic pathways in this microorganism, as well as valuable information for the fine tuning of current in silico metabolic models.

74 citations

Journal ArticleDOI
TL;DR: Three enzymatic activities appear to be clustered and are probably encoded by the same DNA strand in Pseudomonas fluorescens ST, and E. coli clones containing the 3-kb PstI-EcoRI fragment were able to transform styrene into epoxystyrene, and those containing the 2.3-kb BamHI fragment converted epoxy Styrene into phenylacetaldehyde or, only in the presence of glucose, into 2-phenylethanol.
Abstract: A gene bank from Pseudomonas fluorescens ST was constructed in the broad-host-range cosmid pLAFR3 and mobilized into Pseudomonas putida PaW340. Identification of recombinant cosmids containing the styrene catabolism genes was performed by screening transconjugants for growth on styrene and epoxystyrene. Transposon mutagenesis and subcloning of one of the selected genome fragments have led to the identification of three enzymatic activities: a monooxygenase activity encoded by a 3-kb PstI-EcoRI fragment and an epoxystyrene isomerase activity and an epoxystyrene reductase activity encoded by a 2.3-kb BamHI fragment. Escherichia coli clones containing the 3-kb PstI-EcoRI fragment were able to transform styrene into epoxystyrene, and those containing the 2.3-kb BamHI fragment converted epoxystyrene into phenylacetaldehyde or, only in the presence of glucose, into 2-phenylethanol. The three genes appear to be clustered and are probably encoded by the same DNA strand. In E. coli, expression of the epoxystyrene reductase gene was under the control of its own promoter, whereas the expression of the other two genes was dependent on the presence of an external vector promoter.

74 citations

Journal ArticleDOI
TL;DR: In vitro experiments show that McpT is methylated by CheR and McPT net methylation was diminished in the presence of hydrocarbons, what influences chemotactic movement towards these chemicals.
Abstract: Bacterial chemotaxis is an adaptive behaviour, which requires sophisticated information-processing capabilities that cause motile bacteria to either move towards or flee from chemicals. Pseudomonas putida DOT-T1E exhibits the capability to move towards different aromatic hydrocarbons present at a wide range of concentrations. The chemotactic response is mediated by the McpT chemoreceptor encoded by the pGRT1 megaplasmid. Two alleles of mcpT are borne on this plasmid and inactivation of either one led to loss of this chemotactic phenotype. Cloning of mcpT into a plasmid complemented not only the mcpT mutants but also its transfer to other Pseudomonas conferred chemotactic response to high concentrations of toluene and other chemicals. Therefore, the phenomenon of chemotaxis towards toxic compounds at high concentrations is gene-dose dependent. In vitro experiments show that McpT is methylated by CheR and McpT net methylation was diminished in the presence of hydrocarbons, what influences chemotactic movement towards these chemicals.

74 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206