scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the reaction rate is substrate‐limited in the two‐liquid phase system used and that host intrinsic dehydrogenases and not CYP153A6 are responsible for the formation of the undesired side products.
Abstract: Living microbial cells are considered to be the catalyst of choice for selective terpene functionalization. However, such processes often suffer from side product formation and poor substrate mass transfer into cells. For the hydroxylation of (S)-limonene to (S)-perillyl alcohol by Pseudomonas putida KT2440 (pGEc47ΔB)(pCom8-PFR1500), containing the cytochrome P450 monooxygenase CYP153A6, the side products perillyl aldehyde and perillic acid constituted up to 26% of the total amount of oxidized terpenes. In this study, it is shown that the reaction rate is substrate-limited in the two-liquid phase system used and that host intrinsic dehydrogenases and not CYP153A6 are responsible for the formation of the undesired side products. In contrast to P. putida KT2440, E. coli W3110 was found to catalyze perillyl aldehyde reduction to the alcohol and no oxidation to the acid. Furthermore, E. coli W3110 harboring CYP153A6 showed high limonene hydroxylation activities (7.1 U g CDW-1). The outer membrane protein AlkL was found to enhance hydroxylation activities of E. coli twofold in aqueous single-phase and fivefold in two-liquid phase biotransformations. In the latter system, E. coli harboring CYP153A6 and AlkL produced up to 39.2 mmol (S)-perillyl alcohol L tot-1 within 26 h, whereas no perillic acid and minor amounts of perillyl aldehyde (8% of the total products) were formed. In conclusion, undesired perillyl alcohol oxidation was reduced by choosing E. coli's enzymatic background as a reaction environment and co-expression of the alkL gene in E. coli represents a promising strategy to enhance terpene bioconversion rates.

71 citations

Journal ArticleDOI
TL;DR: The results suggest that long-term toluene exposure caused a large portion of the biomass to become inactive, even though the biofilm was not substrate limited, and changes in cellular activity that occur during biofilm development should be investigated under conditions relevant to reactor operation.
Abstract: Toluene degradation kinetics by biofilm and planktonic cells of Pseudomonas putida 54G were compared in this study. Batch degradation of (14)C toluene was used to evaluate kinetic parameters for planktonic cells. The kinetic parameters determined for toluene degradation were: specific growth rate, micro(max) = 10.08 +/- 1.2/day; half-saturation constant, K(S) = 3.98 +/- 1.28 mg/L; substrate inhibition constant, K(I) = 42.78 +/- 3.87 mg/L. Biofilm cells, grown on ceramic rings in vapor phase bioreactors, were removed and suspended in batch cultures to calculate (14)C toluene degradation rates. Specific activities measured for planktonic and biofilm cells were similar based on toluene degrading cells and total biomass. Long-term toluene exposure reduced specific activities that were based on total biomass for both biofilm and planktonic cells. These results suggest that long-term toluene exposure caused a large portion of the biomass to become inactive, even though the biofilm was not substrate limited. Conversely, specific activities based on numbers of toluene-culturable cells were comparable for both biofilm and planktonically grown cultures. Planktonic cell kinetics are often used in bioreactor models to model substrate degradation and growth of bacteria in biofilms, a procedure we found to be appropriate for this organism. For superior bioreactor design, however, changes in cellular activity that occur during biofilm development should be investigated under conditions relevant to reactor operation before predictive models for bioreactor systems are developed.

71 citations

Journal ArticleDOI
TL;DR: The identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440 is reported, which will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.
Abstract: Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. This discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.

71 citations

Journal ArticleDOI
TL;DR: Scale up and optimization of the bioconversions to these key synthons for chiral synthesis of potential intermediates for commercial manufacture of indinavir sulfate are described.

71 citations

Journal ArticleDOI
TL;DR: To the authors' knowledge, this is the first time that ethyl acetate by gas chromatographic analysis has been definitely demonstrated to be an intermediate of MEK degradation.
Abstract: Pseudomonas veronii MEK700 was isolated from a biotrickling filter cleaning 2-butanone-loaded waste air. The strain is able to grow on 2-butanone and 2-hexanol. The genes for degradation of short chain alkyl methyl ketones were identified by transposon mutagenesis using a newly designed transposon, mini-Tn5495, and cloned in Escherichia coli. DNA sequence analysis of a 15-kb fragment revealed three genes involved in methyl ketone degradation. The deduced amino acid sequence of the first gene, mekA, had high similarity to Baeyer-Villiger monooxygenases; the protein of the second gene, mekB, had similarity to homoserine acetyltransferases; the third gene, mekR, encoded a putative transcriptional activator of the AraC/XylS family. The three genes were located between two gene groups: one comprising a putative phosphoenolpyruvate synthase and glycogen synthase, and the other eight genes for the subunits of an ATPase. Inactivation of mekA and mekB by insertion of the mini-transposon abolished growth of P. veronii MEK700 on 2-butanone and 2-hexanol. The involvement of mekR in methyl ketone degradation was observed by heterologous expression of mekA and mekB in Pseudomonas putida. A fragment containing mekA and mekB on a plasmid was not sufficient to allow P. putida KT2440 to grow on 2-butanone. Not until all three genes were assembled in the recombinant P. putida was it able to use 2-butanone as carbon source. The Baeyer-Villiger monooxygenase activity of MekA was clearly demonstrated by incubating a mekB transposon insertion mutant of P. veronii with 2-butanone. Hereby, ethyl acetate was accumulated. To our knowledge, this is the first time that ethyl acetate by gas chromatographic analysis has been definitely demonstrated to be an intermediate of MEK degradation. The mekB-encoded protein was heterologously expressed in E. coli and purified by immobilized metal affinity chromatography. The protein exhibited high esterase activity towards short chain esters like ethyl acetate and 4-nitrophenyl acetate.

71 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206