scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes.
Abstract: The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.

70 citations

Journal ArticleDOI
TL;DR: A whole-cell bioluminescent biosensor, PpF1G4, which contains a chromosomally based sep-lux transcriptional fusion and represents a second-generation biosensor that is not based on a catabolic promoter but is nonetheless inducible by aromatic pollutants and moreover functional under nutrient-rich conditions.
Abstract: A new gene cluster, designated sepABC and a divergently transcribed sepR, was found downstream of the two-component todST phosphorelay system that regulates toluene degradation (the tod pathway) in Pseudomonas putida F1 (PpF1). The deduced amino acid sequences encoded by sepABC show a high homology to bacterial proteins known to be involved in solvent efflux or multidrug pumps. SepA, SepB and SepC are referred to be periplasmic, inner membrane and outer membrane efflux proteins respectively. Effects on growth of various PpF1 mutants compared to that of the wild type in the presence of toluene indicated a possible protective role of the solvent efflux system in a solvent-stressed environment. Growth tests with the complemented mutants confirmed the involvement of the Sep proteins in conferring solvent tolerance. The sepR gene encodes a 260-residue polypeptide that is a member of the E. coli IclR repressor protein family. The repressor role of SepR was established by conducting tests with a sep-lacZ transcriptional fusion in Escherichia coli and PpF1, expression of SepR as a maltose-binding fusion protein in a DNA binding assay, and mRNA analysis. Southern hybridization experiments and analysis of the P. putida KT2440 genome sequence indicated that sepR is a relatively rare commodity compared to homologues of the sepABC genes. We developed a whole-cell bioluminescent biosensor, PpF1G4, which contains a chromosomally based sep-lux transcriptional fusion. The biosensor showed significant induction of the sepABC genes by a wide variety of aromatic molecules, including benzene, toluene, ethylbenzene, and all three isomers of xylene (BTEX), naphthalene, and complex mixtures of aliphatic and aromatic hydrocarbons. PpF1G4 represents a second-generation biosensor that is not based on a catabolic promoter but is nonetheless inducible by aromatic pollutants and moreover functional under nutrient-rich conditions.

70 citations

Journal ArticleDOI
TL;DR: High-density cultures of Pseudomonas putida IPT 046 are studied for the production of medium-chain-length polyhydroxyalkanoates (PHAMCL) using an equimolar mixture of glucose and fructose as carbon sources to observe limitation and inhibition owing to NH4+ ions.
Abstract: We studied high-density cultures of Pseudomonas putida IPT 046 for the production of medium-chain-length polyhydroxyalkanoates (PHAMCL) using an equimolar mixture of glucose and fructose as carbon sources. Kinetics studies of P. putida growth resulted in a maximum specific growth rate of 0.65h−1. Limitation and inhibition owing to NH4 + ions were observed, respectively, at 400 and 3500 mg of NH4 +/L. The minimum concentration of dissolved oxygen in the broth must be 15% of saturation. Fed-batch strategies for high-cell-density cultivation were proposed. Pulse feed followed by constant feed produced a cell concentration of 32 g/L in 18 h of fermentation and low PHAMCL content. Constant feed produced a cell concentration of 35 g/L, obtained in 27 h of fermentation, with up to 15% PHAMCL. Exponential feed produced a cell concentration of 30 g/L in 20 h of fermentation and low PHAMCL content. Using the last strategy, 21% PHAMCL was produced during a period of 34 h of fed-batch operation, with a final cell concentration of 40 g/L and NH4 + limitation. Using phosphate limitation, 50 g/L cell concentration, 63% PHAMCL and a productivity of 0.8 g/(L·h) were obtained in 42 h of fed-batch operation. The PHAMCL yield factors from consumed carbohydrate for N-limited and P-limited experiments were, respectively, 0.15 and 0.19 g/g.

70 citations

Journal ArticleDOI
TL;DR: A fast and convenient CRISPR–Cas9 method in P. putida KT2440 could be achieved within 5 days, and the mutation efficiency reached > 70%.
Abstract: The soil bacterium Pseudomonas putida KT2440 is a “generally recognized as safe”-certified strain with robust property and versatile metabolism. Thus, it is an ideal candidate for synthetic biology, biodegradation, and other biotechnology applications. The known genome editing approaches of Pseudomonas are suboptimal; thus, it is necessary to develop a high efficiency genome editing tool. In this study, we established a fast and convenient CRISPR–Cas9 method in P. putida KT2440. Gene deletion, gene insertion and gene replacement could be achieved within 5 days, and the mutation efficiency reached > 70%. Single nucleotide replacement could be realized, overcoming the limitations of protospacer adjacent motif sequences. We also applied nuclease-deficient Cas9 binding at three locations upstream of enhanced green fluorescent protein (eGFP) for transcriptional inhibition, and the expression intensity of eGFP reduced to 28.5, 29.4, and 72.1% of the control level, respectively. Furthermore, based on this CRISPR–Cas9 system, we also constructed a CRISPR–Cpf1 system, which we validated for genome editing in P. putida KT2440. In this research, we established CRISPR based genome editing and regulation control systems in P. putida KT2440. These fast and efficient approaches will greatly facilitate the application of P. putida KT2440.

70 citations

Journal ArticleDOI
TL;DR: This study has identified genes involved in the metabolism of different carbon sources and PHA synthesis that will be invaluable to understand how genes are regulated and construct transgenic strains to utilize carbon sources more efficiently and better produce PHAs.

70 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206