scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A genome-scale constraint-based model of the metabolism of Pseudomonas putida yields valuable insights into genotype–phenotype relationships and provides a sound framework to explore this versatile bacterium and to capitalize on its vast biotechnological potential.
Abstract: A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, 13C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype–phenotype relationships and provides a sound framework to explore this versatile bacterium and to capitalize on its vast biotechnological potential.

256 citations

Journal ArticleDOI
TL;DR: The genome of KT2440 exhibits combinations of features characteristic of terrestrial, rhizosphere and aquatic bacteria, which thrive in either copiotrophic or oligotrophic habitats, and suggests that P. putida has evolved and acquired functions that equip it to thrive in diverse, often inhospitable environments.
Abstract: A major challenge in microbiology is the elucidation of the genetic and ecophysiological basis of habitat specificity of microbes. Pseudomonas putida is a paradigm of a ubiquitous metabolically versatile soil bacterium. Strain KT2440, a safety strain that has become a laboratory workhorse worldwide, has been recently sequenced and its genome annotated. By drawing on both published information and on original in silico analysis of its genome, we address here the question of what genomic features of KT2440 could explain or are consistent with its ubiquity, metabolic versatility and adaptability. The genome of KT2440 exhibits combinations of features characteristic of terrestrial, rhizosphere and aquatic bacteria, which thrive in either copiotrophic or oligotrophic habitats, and suggests that P. putida has evolved and acquired functions that equip it to thrive in diverse, often inhospitable environments, either free-living, or in close association with plants. The high diversity of protein families encoded by its genome, the large number and variety of small aralogous families, insertion elements, repetitive extragenic palindromic sequences, as well as the mosaic structure of the genome (with many regions of 'atypical' composition) and the multiplicity of mobile elements, reflect a high functional diversity in P. putida and are indicative of its evolutionary trajectory and adaptation to the diverse habitats in which it thrives. The unusual wealth of determinants for high affinity nutrient acquisition systems, mono- and di-oxygenases, oxido-reductases, ferredoxins and cytochromes, dehydrogenases, sulfur metabolism proteins, for efflux pumps and glutathione-S-transfereases, and for the extensive array of extracytoplasmatic function sigma factors, regulators, and stress response systems, constitute the genomic basis for the exceptional nutritional versatility and opportunism of P. putida , its ubiquity in diverse soil, rhizosphere and aquatic systems, and its renowned tolerance of natural and anthropogenic stresses. This metabolic diversity is also the basis of the impressive evolutionary potential of KT2440, and its utility for the experimental design of novel pathways for the catabolism of organic, particularly aromatic, pollutants, and its potential for bioremediation of soils contaminated with such compounds as well as for its application in the production of high-added value compounds.

253 citations

Journal ArticleDOI
TL;DR: A silver-resistant strain of Pseudomonas stutzeri was isolated from a silver mine and harbored three plasmids, the largest of which (pKK1; molecular weight, 49.4 X 10(6)) specified silver resistance.
Abstract: A silver-resistant strain of Pseudomonas stutzeri was isolated from a silver mine. It harbored three plasmids, the largest of which (pKK1; molecular weight, 49.4 X 10(6)) specified silver resistance. Plasmid pKK1 was apparently nonconjugative but could be transferred to Pseudomonas putida by mobilization with plasmid R68.45. Images

250 citations

Journal ArticleDOI
TL;DR: The basic mechanisms underlying solvent tolerance in Pseudomonas putida DOT-T1E are efflux pumps that remove the solvent from bacterial cell membranes and the mutant was unable to remove 1,2,4-[14C]trichlorobenzene from the cell membranes when grown on Luria-Bertani medium but was able to remove the aromatic compound when pregrown on LB medium with toluene supplied via the gas phase.
Abstract: The basic mechanisms underlying solvent tolerance in Pseudomonas putida DOT-T1E are efflux pumps that remove the solvent from bacterial cell membranes. The solvent-tolerant P. putida DOT-T1E grows in the presence of high concentrations (e.g., 1% [vol/vol]) of toluene and octanol. Growth of P. putida DOT-T1E cells in LB in the presence of toluene supplied via the gas phase has a clear effect on cell survival: the sudden addition of 0.3% (vol/vol) toluene to P. putida DOT-T1E pregrown with toluene in the gas phase resulted in survival of almost 100% of the initial cell number, whereas only 0.01% of cells pregrown in the absence of toluene tolerated exposure to this aromatic hydrocarbon. One class of toluene-sensitive octanol-tolerant mutant was isolated after Tn5-′phoA mutagenesis of wild-type P. putida DOT-T1E cells. The mutant, called P. putida DOT-T1E-18, was extremely sensitive to 0.3% (vol/vol) toluene added when cells were pregrown in the absence of toluene, whereas pregrowth on toluene supplied via the gas phase resulted in survival of about 0.0001% of the initial number. Solvent exclusion was tested with 1,2,4-[14C]trichlorobenzene. The levels of radiochemical accumulated in wild-type cells grown in the absence and in the presence of toluene were not significantly different. In contrast, the mutant was unable to remove 1,2,4-[14C]trichlorobenzene from the cell membranes when grown on Luria-Bertani (LB) medium but was able to remove the aromatic compound when pregrown on LB medium with toluene supplied via the gas phase. The amount of 14C-labeled substrate in whole cells increased in competition assays in which toluene and xylenes were the unlabeled competitors, whereas this was not the case when benzene was the competitor. This finding suggests that the exclusion system works specifically with certain aromatic substrates. The mutation in P. putida DOT-T1E-18 was cloned, and the knockedout gene was sequenced and found to be homologous to the drug exclusion gene mexB, which belongs to the efflux pump family of the resistant nodulator division type.

246 citations

Journal ArticleDOI
TL;DR: Six bph genes, including bphA1 and bphC, that are responsible for the initial three steps of biphenyl degradation are identified in Rhodococcus sp.
Abstract: Rhodococcus sp. strain RHA1 is a gram-positive polychlorinated biphenyl (PCB) degrader which can degrade 10 ppm of PCB48 (equivalent to Aroclor1248), including tri-, tetra-, and pentachlorobiphenyls, in a few days. We isolated the 7.6-kb EcoRI-BamHI fragment carrying the biphenyl catabolic genes of RHA1 and determined their nucleotide sequence. On the basis of deduced amino acid sequence homology, we identified six bph genes, bphA1A2A3A4, bphB, and bphC, that are responsible for the initial three steps of biphenyl degradation. The order of bph genes in RHA1 is bphA1A2A3A4-bphC-bphB. This gene order differs from that of other PCB degraders reported previously. The amino acid sequences deduced from the RHA1 bph genes have a higher degree of homology with the tod genes from Pseudomonas putida F1 (49 to 79%) than with the bph genes of Pseudomonas sp. strains KF707 and KKS102 (30 to 65%). In Escherichia coli, bphA gene activity was not observed even when expression vectors were used. The activities of bphB and bphC, however, were confirmed by observing the transformation of biphenyl to a meta-cleavage compound with the aid of benzene dioxygenase activity that complemented the bphA gene activity (S. Irie, S. Doi, T. Yorifuji, M. Takagi, and K. Yano, J. Bacteriol. 169:5174-5179, 1987). The expected products of the cloned bph genes, except bphA3, were observed in E. coli in an in vitro transcription-translation system. Insertion mutations of bphA1 and bphC of Rhodococcus sp. strain RHA1 were constructed by gene replacement with cloned gene fragments.(ABSTRACT TRUNCATED AT 250 WORDS)

246 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206