scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Cells previously adapted to toxic concentrations of toluene exhibited increased tolerance to all applied concentrations of zinc compared with nonadapted cells, and a distinct optimum cis/trans isomerase activity was measured at pHs between 4.0 and 5.0, whereas at higher or lower pHs no reaction occurred.
Abstract: The membrane reactions of Pseudomonas putida S12 to environmental stress were investigated. Cells reacted to the addition of six different heavy metals with an increase in the ratio of trans to cis unsaturated fatty acids. A correlation among the increase in the trans/cis ratio, the toxic effects of the heavy metals, and nonspecific permeabilization of the cytoplasmic membrane, as indicated by an efflux of potassium ions, was measured. Cells previously adapted to toxic concentrations of toluene exhibited increased tolerance to all applied concentrations of zinc compared with nonadapted cells. Cells exposed to different temperatures grew optimally at 30(deg)C. The degree of saturation of the membrane fatty acids of these cells decreased with decreasing temperature. An increase in the trans/cis ratio of unsaturated fatty acids took place only at higher temperatures. Osmotic stress, expressed as reduced water activity, was obtained by using different types of solutes. Only in the presence of toxic concentrations of sodium chloride or sucrose did the trans/cis ratio increase. At no applied water activity a significant effect of glycerol on the trans/cis ratio was measured. When cells were exposed to different pHs, a distinct optimum cis/trans isomerase activity was measured at pHs between 4.0 and 5.0, whereas at higher or lower pHs no reaction occurred. This optimum coincided with a loss of viability between pH 4 and 5.

152 citations

Journal ArticleDOI
01 Feb 1979-Nature
TL;DR: This report demonstrates the transfer of the TOL plasmid from Pseudomonas putida mt-2 (WR 101) to PseUDomonas sp.
Abstract: LARGE amounts of novel organic compounds are released into the environment by the rapidly growing chemical industry. The main agents for returning natural and, presumably, synthetic organic compounds to the carbon cycle are bacteria and fungi, provided that catabolic enzymes with appropriate specificities, transport systems and regulatory mechanisms can be activated. One or several of these conditions for total degradation do not seem to be fulfilled for certain types of man-made compounds, in particular, the halogenated aromatic hydrocarbons. In this report, we demonstrate the transfer of the TOL plasmid from Pseudomonas putida mt-2 (WR 101) to Pseudomonas sp. B13 (WR 1) enabling novel strains to be isolated which can utilize various chlorosubstituted benzoates as their sole source of carbon and energy.

151 citations

Journal ArticleDOI
TL;DR: The nucleotide sequence revealed two open reading frames corresponding to the bphC and bphD genes encoding 2,3-dihydroxybiphenyl dioxygenase and 2-hydroxy-6-oxo- 6-phenylhexa-2,4-dienoic acid (ring-meta-cleavage compound) hydrolase.
Abstract: We cloned the entire bphABCD genes encoding degradation of biphenyl and polychlorinated biphenyls to benzoate and chlorobenzoates from the chromosomal DNA of Pseudomonas putida KF715. The nucleotide sequence revealed two open reading frames corresponding to the bphC gene encoding 2,3-dihydroxybiphenyl dioxygenase and the bphD gene encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (ring-meta-cleavage compound) hydrolase.

151 citations

Journal ArticleDOI
TL;DR: The UV-B responses and recovery abilities of the different bacteria were consistent with the irradiation levels in their native environment and the recovery strategies through dark and light repair were different in all strains.
Abstract: Acinetobacter johnsonii A2 isolated from the natural community of Laguna Azul (Andean Mountains at 4,560 m above sea level), Serratia marcescens MF42, Pseudomonas sp. strain MF8 isolated from the planktonic community, and Cytophaga sp. strain MF7 isolated from the benthic community from Laguna Pozuelos (Andean Puna at 3,600 m above sea level) were subjected to UV-B (3,931 J m−2) irradiation. In addition, a marine Pseudomonas putida strain, 2IDINH, and a second Acinetobacter johnsonii strain, ATCC 17909, were used as external controls. Resistance to UV-B and kinetic rates of light-dependent (UV-A [315 to 400 nm] and cool white light [400 to 700 nm]) and -independent reactivation following exposure were determined by measuring the survival (expressed as CFU) and accumulation of cyclobutane pyrimidine dimers (CPD). Significant differences in survival after UV-B irradiation were observed: Acinetobacter johnsonii A2, 48%; Acinetobacter johnsonii ATCC 17909, 20%; Pseudomonas sp. strain MF8, 40%; marine Pseudomonas putida strain 2IDINH, 12%; Cytophaga sp. strain MF7, 20%; and Serratia marcescens, 21%. Most bacteria exhibited little DNA damage (between 40 and 80 CPD/Mb), except for the benthic isolate Cytophaga sp. strain MF7 (400 CPD/Mb) and Acinetobacter johnsonii ATCC 17909 (160 CPD/Mb). The recovery strategies through dark and light repair were different in all strains. The most efficient in recovering were both Acinetobacter johnsonii A2 and Cytophaga sp. strain MF7; Serratia marcescens MF42 showed intermediate recovery, and in both Pseudomonas strains, recovery was essentially zero. The UV-B responses and recovery abilities of the different bacteria were consistent with the irradiation levels in their native environment.

151 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206