scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigation of the feasibility of biologically removing phenol from waste gases by means of a biofilter using a Pseudomonas putida strain showed that the pure culture is more efficient than the mixed one, even when the latter has undergone three successive acclimatization tests.
Abstract: The purpose of this study is to investigate the feasibility of biologically removing phenol from waste gases by means of a biofilter using a Pseudomonas putida strain. Two series of both batch and continuous tests have been performed in order to ascertain the microbial degradation of phenol. For the preliminary batch tests, carried out in order to test the effective feasibility of the process and to investigate their kinetic behavior, two different microbial cultures belonging to the Pseudomonas genus have been employed, a heterogeneous culture and a pure strain of P. putida. The results of these comparative investigation showed that the pure culture is more efficient than the mixed one, even when the latter has undergone three successive acclimatization tests. The continuous experiments have been conducted during a period of about 1 year in a laboratory-scale column, packed with a mixture of peat and glass beads, and utilizing the pure culture of P. putida as microflora and varying the inlet phenol concentration from 50 up to 2000 mg m(-3). The results obtained show that high degrees of conversion can be obtained (0.93/0.996) operating at a residence time of 54 s.

130 citations

Journal ArticleDOI
TL;DR: In this article, Fourier transform infrared (FTIR) spectroscopy was used in several complementary sample introduction modes (attenuated total reflectance (ATR), diffuse reflectance [DRIFT], and transmission) to investigate the processes of cell adhesion, biofilm growth, and biological Mnoxidation by Pseudomonas putida strain GB-1.
Abstract: Biomineralization in heterogeneous aqueous systems results from a complex association between pre-existing surfaces, bacterial cells, extracellular biomacromolecules, and neoformed precipitates. Fourier transform infrared (FTIR) spectroscopy was used in several complementary sample introduction modes (attenuated total reflectance [ATR], diffuse reflectance [DRIFT], and transmission) to investigate the processes of cell adhesion, biofilm growth, and biological Mn-oxidation by Pseudomonas putida strain GB-1. Distinct differences in the adhesive properties of GB-1 were observed upon Mn oxidation. No adhesion to the ZnSe crystal surface was observed for planktonic GB-1 cells coated with biogenic MnO x , whereas cell adhesion was extensive and a GB-1 biofilm was readily grown on ZnSe, CdTe, and Ge crystals prior to Mn-oxidation. IR peak intensity ratios reveal changes in biomolecular (carbohydrate, phosphate, and protein) composition during biologically catalyzed Mn-oxidation. In situ monitoring via ATR-FTIR o...

130 citations

Journal ArticleDOI
TL;DR: Two new metabolites, 5-carboxymethyl-2-hydroxymuconic acid and 2-hydroxyhepta-2,4-diene-1,7-dioic acid, were isolated from reaction mixtures and a third, 4-Hydroxyphenylacetic acid, was shown to be cleaved by extracts to give pyruvate and succinic semialdehyde.
Abstract: A species of Acinetobacter and two strains of Pseudomonas putida when grown with 4-hydroxyphenylacetic acid gave cell extracts that converted 3,4-dihydroxyphenylacetic acid (homoprotocatechuic acid) into carbon dioxide, pyruvate, and succinate. The sequence of enzyme-catalyzed steps was as follows: ring-fission by a 2,3-dioxygenase, nicotinamide adenine dinucleotide-dependent dehydrogenation, decarboxylation, hydration, aldol fission, and oxidation of succinic semialdehyde. Two new metabolites, 5-carboxymethyl-2-hydroxymuconic acid and 2-hydroxyhepta-2,4-diene-1,7-dioic acid, were isolated from reaction mixtures and a third, 4-hydroxy-2-ketopimelic acid, was shown to be cleaved by extracts to give pyruvate and succinic semialdehyde. Enzymes of this metabolic pathway were present in Acinetobacter grown with 4-hydroxyphenylacetic acid but were effectively absent when 3-hydroxyphenylacetic acid or phenylacetic acid served as sources of carbon.

130 citations

Journal ArticleDOI
TL;DR: Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation.
Abstract: 13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation.

129 citations

Journal ArticleDOI
TL;DR: A reinvestigation of the catabolic pathway used by Pseudomonas putida NCIB 10015 (Dagley's strain) for the degradation of phenol and the cresols has proved the existence of a metabolic divergence after meta cleavage of the catechols formed by hydroxylation of the primary substrates.
Abstract: 1 A reinvestigation of the catabolic pathway(s) used by Pseudomonas putida NCIB 10015 (Dagley's strain) for the degradation of phenol and the cresols has proved the existence of a metabolic divergence after meta cleavage of the catechols formed by hydroxylation of the primary substrates. The ring-fission products of catechol and 4-methylcatechol are shown to be simultaneously catabolized by two different enzymic activities, an NAD+-dependent dehydrogenase and a cofactor-independent hydrolase. The metabolizing activities of both ring-fission products in extracts of cells grown on phenol and the cresols (o-, m- and p-cresol) were found to be non specific; thermal inactivation of extracts of phenol-grown cells has shown that this nonspecificity is attributable to only one enzyme expressing each activity and that the two activities are located on separate proteins. 2 Extracts of cells grown on all four substrates contain high induced levels of the meta cleavage suite of enzymes functional in the dissimilation of catechol, including both the 4-oxalocrotonate branch (NAD+-dependent 2-hydroxymuconic semialdehyde dehydrogenase, 4-oxalocrotonate tautomerase and 4-oxalocrotonate decarboxylase) and the hydrolytic branch (2-hydroxymuconic semialdehyde hydrolase). 3 The hydroxylase, oxygenase, dehydrogenase and hydrolase activities are shown to be nonspecific and can also act upon the methyl derivatives of their respective substrates. A constant pattern of specificity was found for these enzymes, independent of the monophenolic substrate used for growth. 4 From studies with a mutant lacking phenol hydroxylase, the entire suite of meta cleavage enzymes are shown to be coincidently induced from the top by the primary substrate (phenol or the cresols). 5 The evolutionary and physiological implications of the divergent pathway are discussed.

129 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206