scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability of 1‐aminocyclopropane‐1‐carboxylate‐containing plant growth-promoting bacterial endophytes and their ACC deaminase minus mutants and the rhizospheric plant growth‐promoting bacterium Pseudomonas putida UW4 to delay the senescence of mini carnation cut flowers was assessed.
Abstract: Aims The ability of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing plant growth-promoting bacterial (PGPB) endophytes Pseudomonas fluorescens YsS6 and Pseudomonas migulae 8R6, their ACC deaminase minus mutants and the rhizospheric plant growth-promoting bacterium Pseudomonas putida UW4 to delay the senescence of mini carnation cut flowers was assessed. Methods and results Fresh cut flowers were incubated with either a bacterial cell suspension, the ethylene precursor ACC, the ethylene inhibitor l-α-(aminoethoxyvinyl)-glycine or 0·85% NaCl at room temperature for 11 days. Levels of flower senescence were recorded every other day. To verify the presence of endophytes inside the plant tissues, scanning electron microscopy was performed. Among all treatments, flowers treated with wild-type ACC deaminase-containing endophytic strains exhibited the most significant delay in flower senescence, while flowers treated with the ACC deaminase minus mutants senesced at a rate similar to the control. Flowers treated with Ps. putida UW4 senesced more rapidly than untreated control flowers. Conclusion The only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity so that it may be concluded that this enzyme is directly responsible for the significant delay in flower senescence. Despite containing ACC deaminase activity, Ps. putida UW4 is not taken up by the cut flowers and therefore has no effect on prolonging their shelf life. Significance and impact of the study The world-wide cut flower industry currently uses expensive and potentially environmentally dangerous chemical inhibitors of ethylene to prolong the shelf life of cut flowers. The use of PGPB endophytes with ACC deaminase activity has the potential to replace the chemicals that are currently used by the cut flower industry.

117 citations

Journal ArticleDOI
TL;DR: The results of this study indicate that P. putida SP1 is a low virulence strain that can potentially be applied in the bioremediation of HgCl2 contamination over a broad range of pH.
Abstract: The Pseudomonas putida strain SP1 was isolated from marine environment and was found to be resistant to 280 μM HgCl2. SP1 was also highly resistant to other metals, including CdCl2, CoCl2, CrCl3, CuCl2, PbCl2, and ZnSO4, and the antibiotics ampicillin (Ap), kanamycin (Kn), chloramphenicol (Cm), and tetracycline (Tc). mer operon, possessed by most mercury-resistant bacteria, and other diverse types of resistant determinants were all located on the bacterial chromosome. Cold vapor atomic absorption spectrometry and a volatilization test indicated that the isolated P. putida SP1 was able to volatilize almost 100% of the total mercury it was exposed to and could potentially be used for bioremediation in marine environments. The optimal pH for the growth of P. putida SP1 in the presence of HgCl2 and the removal of HgCl2 by P. putida SP1 was between 8.0 and 9.0, whereas the optimal pH for the expression of merA, the mercuric reductase enzyme in mer operon that reduces reactive Hg2+ to volatile and relatively inert monoatomic Hg0 vapor, was around 5.0. LD50 of P. putida SP1 to flounder and turbot was 1.5 × 109 CFU. Biofilm developed by P. putida SP1 was 1- to 3-fold lower than biofilm developed by an aquatic pathogen Pseudomonas fluorescens TSS. The results of this study indicate that P. putida SP1 is a low virulence strain that can potentially be applied in the bioremediation of HgCl2 contamination over a broad range of pH.

117 citations

Journal ArticleDOI
TL;DR: Results suggest that P. putida Idaho has a greater ability than the solvent-sensitive strain MW1200 to repair damaged membranes through efficient turnover and increased phospholipid biosynthesis.
Abstract: The role of the cell envelope in the solvent tolerance mechanisms of Pseudomonas putida was investigated. The responses of a solvent-tolerant strain, P. putida Idaho, and a solvent-sensitive strain, P. putida MW1200, were examined in terms of phospholipid content and composition and of phospholipid biosynthetic rate following exposure to a nonmetabolizable solvent, o-xylene. Following o-xylene exposure, P. putida MW1200 exhibited a decrease in total phospholipid content. In contrast, P. putida Idaho demonstrated an increase in phospholipid content 1 to 6 h after exposure. Analysis of phospholipid biosynthesis showed P. putida Idaho to have a higher basal rate of phospholipid synthesis than MW1200. This rate increased significantly following exposure to xylene. Both strains showed little significant turnover of phospholipid in the absence of xylene. In the presence of xylene, both strains showed increased phospholipid turnover. The rate of turnover was significantly greater in P. putida Idaho than in P. putida MW1200. These results suggest that P. putida Idaho has a greater ability than the solvent-sensitive strain MW1200 to repair damaged membranes through efficient turnover and increased phospholipid biosynthesis.

117 citations

Journal ArticleDOI
S. Pandza1, M. Baetens1, C. H. Park1, T. Au1, M. Keyhan1, Abdul Matin1 
TL;DR: The flhF gene of Pseudomonas putida is compromised in the development of the starvation‐induced general stress resistance (SGSR) and effective synthesis of several starvation and exponential phase proteins, and somewhat increased protein secretion in MK107 may contribute to its SGSR impairment; the altered protein synthesis pattern also appears to have a role.
Abstract: The flhF gene of Pseudomonas putida, which encodes a GTP-binding protein, is part of the flagellar-motility-chemotaxis operon. Its disruption leads to a random flagellar arrangement in the mutant (MK107) and loss of directional motility in contrast to the wild type, which has polar flagella. The return of a normal flhF allele restores polar flagella and normal motility to MK107; its overexpression triples the flagellar number but does not restore directional motility. As FlhF is homologous to the receptor protein of the signal recognition particle (SRP) pathway of membrane protein translocation, this pathway may have a role in polar flagellar placement in P. putida. MK107 is also compromised in the development of the starvation-induced general stress resistance (SGSR) and effective synthesis of several starvation and exponential phase proteins. While somewhat increased protein secretion in MK107 may contribute to its SGSR impairment, the altered protein synthesis pattern also appears to have a role.

117 citations

Journal ArticleDOI
TL;DR: The findings show that P. putida responds to temporal gradients of chemoattractant by suppressing changes in the direction of rotation of flagella.
Abstract: Pseudomonas putida flagella were examined. Also, changes in motile behavior in response to chemoattractants were analyzed quantitatively by computer. Reversals in the rotation direction of bundles of polar flagella resulted in changes in swimming direction. Cells swimming in buffer changed direction once every 2 s on average, whereas cells exposed to the attractant benzoate changed direction an average of once every 10 s. The findings show that P. putida responds to temporal gradients of chemoattractant by suppressing changes in the direction of rotation of flagella. Images

117 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206