scispace - formally typeset
Search or ask a question
Topic

Pseudomonas putida

About: Pseudomonas putida is a research topic. Over the lifetime, 6854 publications have been published within this topic receiving 230572 citations.


Papers
More filters
Book ChapterDOI
TL;DR: This work isolates the α chain of tryptophan synthetase from Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Aerobacter aerogenes, and Pseudomonas putida and quantifies the amount of messenger RNA corresponding to various segments of the operon.
Abstract: Publisher Summary Tryptophan synthetase (L-serine hydrolyase) is a multimeric enzyme catalyzing the terminal reaction in the biosynthesis of L-tryptophan by microbes arid plants. In general, these enzymes in bacteria and plants appear to dissociate readily and reversibly into smaller subunits, while those of fungi do not. Several factors have made E. coli tryptophan synthetase an enzyme of choice for studies of transcription and translation and the regulation of these processes. The structural genes for α and β chains are adjacent to each other and are well mapped. They comprise the two most distal genes of the multigenic trp operon. All or portions of this operon have been translocated to the chromosome of a series of temperate bacteriophage mutants. DNA from these bacteriophages has been used to quantitate the amount of messenger RNA corresponding to various segments of the operon. The α chain of tryptophan synthetase has been isolated in pure form from Escherichia coli (K-12 and B strains), Salmonella typhimurium, Shigella dysenteriae, Aerobacter aerogenes, and Pseudomonas putida. The molecular weight of the α chain obtained from these sources is approximately 29,000.

107 citations

Journal ArticleDOI
TL;DR: The proteins and functional pathway identified in the current study represent attractive targets for degradation of environmental toxic compounds.
Abstract: Microorganisms such as Pseudomonas putida play important roles in the mineralization of organic wastes and toxic compounds. To comprehensively and accurately elucidate key processes of nicotine degradation in Pseudomonas putida, we measured differential protein abundance levels with MS-based spectral counting in P. putida S16 grown on nicotine or glycerol, a non-repressive carbon source. In silico analyses highlighted significant clustering of proteins involved in a functional pathway in nicotine degradation. The transcriptional regulation of differentially expressed genes was analyzed by using quantitative reverse transcription-PCR. We observed the following key results: (i) The proteomes, containing 1,292 observed proteins, provide a detailed view of enzymes involved in nicotine metabolism. These proteins could be assigned to the functional groups of transport, detoxification, and amino acid metabolism. There were significant differences in the cytosolic protein patterns of cells growing in a nicotine medium and those in a glycerol medium. (ii) The key step in the conversion of 3-succinoylpyridine to 6-hydroxy-3-succinoylpyridine was catalyzed by a multi-enzyme reaction consisting of a molybdopeterin binding oxidase (spmA), molybdopterin dehydrogenase (spmB), and a (2Fe-2S)-binding ferredoxin (spmC) with molybdenum molybdopterin cytosine dinucleotide as a cofactor. (iii) The gene of a novel nicotine oxidoreductase (nicA2) was cloned, and the recombinant protein was characterized. The proteins and functional pathway identified in the current study represent attractive targets for degradation of environmental toxic compounds.

107 citations

Journal ArticleDOI
TL;DR: Modification of shoot and root system dry weights occured in soybean but not in alfalfa in presence of Pseudomonas strains.
Abstract: Allfalfa and soybean are the most important leguminous plants in the agricultural system of the semiarid pampas of Argentina. The possible action of phosphate solubilizing bacteria on the leguminous-rhizobia symbiosis was studied since in this region the available phosphorus distribution is not uniform. The strains used were Sinorhizobium meliloti 3DOh13, a good solubilizer of iron and phosphorus for alfalfa, Bradyrhizobium japonicum TIIIB for soybean and two phosphorus-solubilizing strains of Pseudomonas putida (SP21 and SP22) for growth promotion treatments. Modification of shoot and root system dry weights occured in soybean but not in alfalfa in presence of Pseudomonas strains.

107 citations

Journal ArticleDOI
TL;DR: A 3-HPP catabolic DNA cassette was engineered and shown to be functional not only in enteric bacteria but also in Pseudomonas putida and Rhizobium meliloti, thus facilitating its potential application to improve the catabolic abilities of bacterial strains for degradation of aromatic compounds.
Abstract: We report the complete nucleotide sequence of the gene cluster encoding the 3-(3-hydroxyphenyl)propionate (3-HPP) catabolic pathway of Escherichia coli K-12. Sequence analysis revealed the existence of eight genes that map at min 8 of the chromosome, between the lac and hemB regions. Six enzyme-encoding genes account for a flavin-type monooxygenase (mhpA), the extradiol dioxygenase (mhpB), and the meta-cleavage pathway (mhpCDFE). The order of these catabolic genes, with the sole exception of mhpF, parallels that of the enzymatic steps of the pathway. The mhpF gene may encode the terminal acetaldehyde dehydrogenase (acylating) not reported previously in the proposed pathway. Enzymes that catalyze the early reactions of the pathway, MhpA and MhpB, showed the lowest level of sequence similarity to analogous enzymes of other aromatic catabolic pathways. However, the genes mhpCDFE present the same organization and appear to be homologous to the Pseudomonas xyl, dmp, and nah meta-pathway genes, supporting the hypothesis of the modular evolution of catabolic pathways and becoming the first example of this type of catabolic module outside the genus Pseudomonas. Two bacterial interspersed mosaic elements were found downstream of the mhpABCDFE locus and flank a gene, orfT, which encodes a protein related to the superfamily of transmembrane facilitators that might be associated with transport. All of the genes of the 3-HPP cluster are transcribed in the same direction, with the sole exception of mhpR. Inducible expression of the mhp catabolic genes depends upon the presence, in the cis or trans position, of a functional mhpR gene, which suggests that the mhpR gene product is the activator of the 3-HPP biodegradative pathway. The primary structure of MhpR revealed significant similarities to that of members of the IclR subfamily of transcriptional regulators. A 3-HPP catabolic DNA cassette was engineered and shown to be functional not only in enteric bacteria (E. coli and Salmonella typhimurium) but also in Pseudomonas putida and Rhizobium meliloti, thus facilitating its potential application to improve the catabolic abilities of bacterial strains for degradation of aromatic compounds.

107 citations

Journal ArticleDOI
TL;DR: Plant growth‐promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici, which results in damping‐off of cucumber.
Abstract: Aims: Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identified, and their role in control of Phytophthora damping-off of cucumber evaluated. Methods and Results: The biosurfactants were shown to lyse zoospores of Phy. capsici and inhibit growth of the fungal pathogens Botrytis cinerea and Rhizoctonia solani. In vitro assays further showed that the biosurfactants of strain 267 are essential in swarming motility and biofilm formation. In spite of the zoosporicidal activity, the biosurfactants did not play a significant role in control of Phytophthora damping-off of cucumber, since both wild type strain 267 and its biosurfactant-deficient mutant were equally effective, and addition of the biosurfactants did not provide control. Genetic characterization revealed that surfactant biosynthesis in strain 267 is governed by homologues of PsoA and PsoB, two nonribosomal peptide synthetases involved in production of the cyclic lipopeptides (CLPs) putisolvin I and II. The structural relatedness of the biosurfactants of strain 267 to putisolvins I and II was supported by LC-MS and MS-MS analyses. Conclusions: The biosurfactants produced by Ps. putida 267 were identified as putisolvin-like CLPs; they are essential in swarming motility and biofilm formation, and have zoosporicidal and antifungal activities. Strain 267 provides excellent biocontrol activity against Phytophthora damping-off of cucumber, but the lipopeptide surfactants are not involved in disease suppression. Significance and Impact of the Study: Pseudomonas putida 267 suppresses Phy. capsici damping-off of cucumber and provides a potential supplementary strategy to control this economically important oomycete pathogen. The putisolvin-like biosurfactants exhibit zoosporicidal and antifungal activities, yet they do not contribute to biocontrol of Phy. capsici and colonization of cucumber roots by Ps. putida 267. These results suggest that Ps. putida 267 employs other, yet uncharacterized, mechanisms to suppress Phy. capsici.

107 citations


Network Information
Related Topics (5)
Bacillus subtilis
19.6K papers, 539.4K citations
89% related
Bacteria
23.6K papers, 715.9K citations
88% related
Operon
14.6K papers, 768.6K citations
88% related
Yeast
31.7K papers, 868.9K citations
88% related
Escherichia coli
59K papers, 2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023184
2022345
2021182
2020246
2019226
2018206