scispace - formally typeset
Search or ask a question
Topic

Pull-up resistor

About: Pull-up resistor is a research topic. Over the lifetime, 2347 publications have been published within this topic receiving 27117 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper shows that complementary CMOS is the logic style of choice for the implementation of arbitrary combinational circuits if low voltage, low power, and small power-delay products are of concern.
Abstract: Recently reported logic style comparisons based on full-adder circuits claimed complementary pass-transistor logic (CPL) to be much more power-efficient than complementary CMOS. However, new comparisons performed on more efficient CMOS circuit realizations and a wider range of different logic cells, as well as the use of realistic circuit arrangements demonstrate CMOS to be superior to CPL in most cases with respect to speed, area, power dissipation, and power-delay products. An implemented 32-b adder using complementary CMOS has a power-delay product of less than half that of the CPL version. Robustness with respect to voltage scaling and transistor sizing, as well as generality and ease-of-use, are additional advantages of CMOS logic gates, especially when cell-based design and logic synthesis are targeted. This paper shows that complementary CMOS is the logic style of choice for the implementation of arbitrary combinational circuits if low voltage, low power, and small power-delay products are of concern.

911 citations

Proceedings Article
01 Jan 2002
TL;DR: A set of logic gates and flip-flops needed for cryptographic functions and compared those to Static Complementary CMOS implementations to protect security devices such as smart cards against power attacks are built.
Abstract: To protect security devices such as smart cards against power attacks, we propose a dynamic and differential CMOS logic style. The logic operates with a power consumption independent of both the logic values and the sequence of the data. Consequently, it will not reveal the sensitive data in a device. We have built a set of logic gates and flip-flops needed for cryptographic functions and compared those to Static Complementary CMOS implementations.

589 citations

Proceedings ArticleDOI
L. Heller1, W. Griffin, J. Davis, N. Thoma
01 Jan 1984
TL;DR: A differential CMOS Logic family that is well suited to automated logic minimization and placement and routing techniques, yet has comparable performance to conventional CMOS, will be described.
Abstract: A differential CMOS Logic family that is well suited to automated logic minimization and placement and routing techniques, yet has comparable performance to conventional CMOS, will be described. A CMOS circuit using 10,880 NMOS differential pairs has been developed using this approach.

539 citations

Patent
04 Mar 2013
TL;DR: In this paper, an apparatus and method for supplying operating voltages to a plurality of electronic devices is described. But the apparatus may identify a failure of one of the power supply modules.
Abstract: An apparatus and method for supplying operating voltages to a plurality of electronic devices is disclosed. A plurality of power supply modules of a modular power supply may output voltages to at least two electronic devices. The apparatus may identify a failure of one of the power supply modules. The electronic device may be disconnected from the failed power supply module, and then reconnected to a functional power supply module of the modular power supply. A supplied voltage of the functional power supply module of the modular power supply may be varied, such as wherein the supplied voltage matches the set output voltage of the failed power supply module.

325 citations

Journal ArticleDOI
TL;DR: A new dynamic CMOS technique which is fully racefree, yet has high logic flexibility, and logic inversion is provided, which means higher logic flexibility and less transistors for the same function.
Abstract: Describes a new dynamic CMOS technique which is fully racefree, yet has high logic flexibility. The circuits operate racefree from two clocks /spl phi/ and /spl phi/~ regardless of their overlap time. In contrast to the critical clock skew specification in the conventional CMOS pipelined circuits, the proposed technique imposes no restriction to the amount of clock skew. The main building blocks of the NORA technique are dynamic CMOS and C/SUP 2/MOS logic functions. Static CMOS functions can also be employed. Logic composition rules to mix dynamic CMOS, C/SUP 2/MOS, and conventional CMOS will be presented. Different from Domino technique, logic inversion is also provided. This means higher logic flexibility and less transistors for the same function. The effects of charge redistribution, noise margin, and leakage in the dynamic CMOS blocks are also analyzed. Experimental results show the feasibility of the principles discussed.

309 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
87% related
Integrated circuit
82.7K papers, 1M citations
84% related
Electronic circuit
114.2K papers, 971.5K citations
84% related
Transistor
138K papers, 1.4M citations
81% related
Semiconductor memory
45.4K papers, 663.1K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
202210
20211
20193
20187
201720