scispace - formally typeset
Search or ask a question
Topic

Pulsatile flow

About: Pulsatile flow is a research topic. Over the lifetime, 6278 publications have been published within this topic receiving 149638 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In the current study photoplethysmography was measured on toes and fingers of patients undergoing epidural anaesthesia and three parameters, related to the change in total and pulsatile tissue blood volume, were derived from the PPG baseline and amplitude.
Abstract: Epidural anaesthesia, used for pain relief, is based on blocking the sensory and the sympathetic nerves in the lower part of the body. Since the sympathetic nervous system regulates blood vessel diameter, the sympathetic block is also associated with several haemodynamic changes. In the current study photoplethysmography (PPG) was measured on toes and fingers of patients undergoing epidural anaesthesia. Three parameters, which are related to the change in total and pulsatile tissue blood volume, were derived from the PPG baseline and amplitude. All parameters showed statistically significant increase in the toes after the sympathetic block, indicating higher arterial and venous blood volume and higher pulsatile increase in the arterial blood volume (higher arterial compliance) in the toe. These haemodynamic changes originate from the lower tonus of the arterial and venous wall muscles after the sympathetic block. In the fingers the PPG parameters based on the change in PPG amplitude decreased after the sympathetic block, indicating lower compliance. The measurement of the haemodynamic changes by PPG enables the assessment of the depth of anaesthesia, and can help control the adverse effects of the blockade on the vascular system.

65 citations

Journal ArticleDOI
TL;DR: The reported results provide a coherent explanation of the critical role that hemodynamic factors may play in the early stages of atherogenic process.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the Galerkin method was used to find solutions for the case of a simply supported pipe conveying a pressurized flow whose velocity possesses a harmonic fluctuation about a mean value.

65 citations

Journal ArticleDOI
TL;DR: The liver does not appear to play an important role in detecting glucoprivic action of 2DG to suppress pulsatile LH secretion, suggesting that an important glucose-sensing mechanism is located circumventricularly in the fourth ventricle.
Abstract: Changes in glucose availability are proposed to modulate pulsatile GnRH secretion, and at least two anatomical sites, the liver and hindbrain, may serve as glucose sensors. The present study determined the relative importance of these putative glucose-sensing areas in regulating pulsatile LH secretion in the sheep. Our approach was to administer the antimetabolic glucose analog, 2-deoxy-D-glucose (2DG) into either the hepatic portal vein or the fourth ventricle in gonadectomized females in which LH pulse frequency was high. In the first study, a catheter was placed in the ileocolic vein to determine the effects of local injection of 2DG into the hepatic portal system on the release of LH. After monitoring the pattern of LH secretion for 4 h, 2DG (250 mg/kg) was infused (500 microl/min) into the liver for 2 h. For comparison, animals were also given the same dose of 2DG into a jugular vein for 2 h. Administration of 2DG into either the hepatic portal or jugular vein reduced LH pulse frequency to the same extent. Infusion of the lower dose (50 mg/kg) locally into the hepatic portal vein did not affect plasma LH profiles. Collectively, these results are interpreted to indicate that the liver does not contain special glucose-sensing mechanisms for the glucoprivic suppression of LH pulses. In the second study, 2DG (5 mg/kg) was infused (50 l/min) for 30 min into the fourth ventricle or lateral ventricle. During the subsequent 4-h sampling period, pulsatile LH secretion was significantly suppressed, but there was no significant difference in LH pulse frequency between sites of infusion. Peripheral 2DG concentrations were not detectable after either fourth or lateral ventricle infusions, indicating that the 2DG had acted centrally to suppress LH pulses. Plasma cortisol concentrations increased more in animals infused with 2DG into the fourth ventricle than in those infused into the lateral ventricle, suggesting that 2DG infused into lateral ventricle is transported caudally into the fourth ventricle and acts within the area surrounding the fourth ventricle. Overall, these findings suggest that an important glucose-sensing mechanism is located circumventricularly in the fourth ventricle. Moreover, the liver does not appear to play an important role in detecting glucoprivic action of 2DG to suppress pulsatile LH secretion.

64 citations

Journal ArticleDOI
TL;DR: A synchronized pulsing rotary blood pump offers a simple and powerful control modality for heart unloading and provides pulsatile hemodynamics, which is more physiologic than continuous blood flow and may be useful for perfusion of the other organs.

64 citations


Network Information
Related Topics (5)
Endothelium
34.6K papers, 2.3M citations
78% related
Endothelial stem cell
44.1K papers, 2.6M citations
76% related
Heart failure
107.8K papers, 3.5M citations
74% related
Angiogenesis
58.2K papers, 3.2M citations
74% related
Blood pressure
139.2K papers, 4.2M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023274
2022641
2021170
2020181
2019171
2018189