scispace - formally typeset
Search or ask a question
Topic

Pulse duration

About: Pulse duration is a research topic. Over the lifetime, 19429 publications have been published within this topic receiving 286507 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the role of the laser parameters such as pulse energy and duration and peak power have been investigated to join 3-mm thick Ti6Al4V using the Lumonics JK760TR Nd:YAG pulsed laser.

329 citations

Journal ArticleDOI
TL;DR: The Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode and achieves record pulse properties in ultrafast electron microscopy.

329 citations

Journal ArticleDOI
TL;DR: Experimental studies have confirmed the hypothesis that the application of nanosecond pulses induces a type of programmed cell death, apoptosis, in biological cells, and shown that the similarity law allows one not only to predict cell viability based on pulse parameters, but has also been shown to be applicable for inducing platelet aggregation.
Abstract: Electrical models for biological cells predict that reducing the duration of applied electrical pulses to values below the charging time of the outer cell membrane (which is on the order of 100 ns for mammalian cells) causes a strong increase in the probability of electric field interactions with intracellular structures due to displacement currents. For electric field amplitudes exceeding MV/m, such pulses are also expected to allow access to the cell interior through conduction currents flowing through the permeabilized plasma membrane. In both cases, limiting the duration of the electrical pulses to nanoseconds ensures only nonthermal interactions of the electric field with subcellular structures. This intracellular access allows the manipulation of cell functions. Experimental studies, in which human cells were exposed to pulsed electric fields of up to 300 kV/cm amplitude with durations as short as 3 ns, have confirmed this hypothesis and have shown that it is possible to selectively alter the behavior and/or survival of cells. Observed nanosecond pulsed effects at moderate electric fields include intracellular release of calcium and enhanced gene expression, which could have long term implications on cell behavior and function. At increased electric fields, the application of nanosecond pulses induces a type of programmed cell death, apoptosis, in biological cells. Cell survival studies with 10 ns pulses have shown that the viability of the cells scales inversely with the electrical energy density, which is similar to the "dose" effect caused by ionizing radiation. On the other hand, there is experimental evidence that, for pulses of varying durations, the onset of a range of observed biological effects is determined by the electrical charge that is transferred to the cell membrane during pulsing. This leads to an empirical similarity law for nanosecond pulse effects, with the product of electric field intensity, pulse duration, and the square root of the number of pulses as the similarity parameter. The similarity law allows one not only to predict cell viability based on pulse parameters, but has also been shown to be applicable for inducing platelet aggregation, an effect which is triggered by internal calcium release. Applications for nanosecond pulse effects cover a wide range: from a rather simple use as preventing biofouling in cooling water systems, to advanced medical applications, such as gene therapy and tumor treatment. Results of this continuing research are leading to the development of wound healing and skin cancer treatments, which are discussed in some detail.

326 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSS) on single-crystalline silicon upon irradiation with single (N=1) and multiple (N≤1000) linearly polarized femtosecond (fs) laser pulses (pulse duration τ=130 fs, central wavelength λ=800 nm) in air is studied experimentally.
Abstract: The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSS) on single-crystalline silicon upon irradiation with single (N=1) and multiple (N≤1000) linearly polarized femtosecond (fs) laser pulses (pulse duration τ=130 fs, central wavelength λ=800 nm) in air is studied experimentally. Scanning electron microscopy (SEM) and optical microscopy are used for imaging of the ablated surface morphologies, both revealing LIPSS with periodicities close to the laser wavelength and an orientation always perpendicular to the polarization of the fs-laser beam. It is experimentally demonstrated that these LIPSS can be formed in silicon upon irradiation by single fs-laser pulses—a result that is additionally supported by a recent theoretical model. Two-dimensional Fourier transforms of the SEM images allow the detailed analysis of the distribution of the spatial frequencies of the LIPSS and indicate, at a fixed peak fluence, a monotonous decrease in their mean spatial period between ∼770 nm...

320 citations

Journal ArticleDOI
TL;DR: In this article, the effect of pulsed electric fields with amplitudes in the range of 100 V/cm-100 kV/cm on bacteria and aquatic nuisance species has been explored.
Abstract: The effect of pulsed electric fields with amplitudes in the range of 100 V/cm-100 kV/cm on bacteria and aquatic nuisance species has been explored. The pulse duration was so short that heating of the biological matter could be neglected. The electrical energy required for lysing of bacteria, or stunning of aquatic species, decreases when the pulse duration is reduced. For lysing of Eschericia coli, this tendency has been proven to hold for pulsewidths as short as 60 ns. For macroorganisms, however, it was found that for pulsewidths of less than 5 /spl mu/s, the tendency is reversed: the energy required to affect the macroorganisms increases again. This minimum in energy, or maximum in efficiency, respectively, can be understood by taking the time required for electrical charging of the cell membrane into account. Applications of the pulsed electric field technique (PEFT) are in biofouling prevention, debacterialization of liquids, and in the field of medicine. A series of field tests on biofouling prevention in a cooling system with untreated water as coolant has demonstrated the economic feasibility of the electro-technology.

317 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
93% related
Optical fiber
167K papers, 1.8M citations
85% related
Electric field
87.1K papers, 1.4M citations
84% related
Plasma
89.6K papers, 1.3M citations
84% related
Amplifier
163.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023175
2022408
2021543
2020619
2019668
2018665