scispace - formally typeset
Search or ask a question
Topic

Pulse duration

About: Pulse duration is a research topic. Over the lifetime, 19429 publications have been published within this topic receiving 286507 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Among a seven-dimensional parameter space for waveguide optimization, two frequently overlooked parameters, pulse duration and polarization, were found to be key in overcoming undesired nonlinear optical responses imposed by lithium niobate.
Abstract: For the first time to our knowledge, ultrafast laser writing has generated room-temperature stable guided-wave optics in bulk lithium niobate for the telecommunication spectrum. Among a seven-dimensional parameter space for waveguide optimization, two frequently overlooked parameters, pulse duration and polarization, were found to be key in overcoming undesired nonlinear optical responses imposed by this material. Single-mode waveguides were best formed with circularly polarized light having a relatively long pulse duration of approximately 1.0 ps. The waveguides were highly polarization dependent and guided in both telecommunication bands near 1300 and 1550 nm, exhibiting losses as low as 0.7 dB/cm.

68 citations

Journal ArticleDOI
TL;DR: This technique was used for measuring of plane residual stress in welds and for in-depth testing of subsurface residual stresses in metals and the results are in good agreement with the laser ultrasonic method.

68 citations

Journal ArticleDOI
TL;DR: In this article, an upper estimate of the betatron x-ray pulse duration was obtained by performing a time-resolved X-ray diffraction experiment: the ultrafast nonthermal melting of a semiconductor crystal (InSb) has been used to trigger the Betatron xray beam diffracted from the surface.
Abstract: This Letter aims to demonstrate the ultrafast nature of laser produced betatron radiation and its potential for application experiments. An upper estimate of the betatron x-ray pulse duration has been obtained by performing a time-resolved x-ray diffraction experiment: The ultrafast nonthermal melting of a semiconductor crystal (InSb) has been used to trigger the betatron x-ray beam diffracted from the surface. An x-ray pulse duration of less than 1ps at full width half-maximum (FWHM) has been measured with a best fit obtained for 100fs FWHM.

68 citations

Journal ArticleDOI
01 Jan 2001-Frequenz
TL;DR: In this article, the authors developed a high-power gyrotron with an output power of 1 MW in continuous wave (CW) operation for heating of plasmas used in nuclear fusion research, which was performed under responsibility of FZK Karlsruhe in collaboration with CRPP Lausanne, IPF Stuttgart, IPP Garching and Greifswald, CEA Cadarache and TED Velizy.
Abstract: The development of high power gyrotrons in continuous wave (CW) operation for heating of plasmas used in nuclear fusion research has been in progress for several years in a joint collaboration between different European research institutes and industrial partners. A recent RD program aims at the development of 140 GHz gyrotrons with an output power of 1 MW in CW operation for the 10 MW ECRH system of the new stellarator plasma physics experiment Wendelstein 7-X at IPP Greifswald, Germany. The work is performed under responsibility of FZK Karlsruhe in collaboration with CRPP Lausanne, IPF Stuttgart, IPP Garching and Greifswald, CEA Cadarache and TED Velizy. The gyrotron operates in the TE28.8 mode and is equipped with a diode type magnetron injection electron gun, an improved beam tunnel, a high-mode purity low-ohmic loss cavity, an optimized non-linear up-taper, a highly efficient internal quasi-optical mode converter, a single-stage depressed collector and an edge-cooled, single disk CVD-diamond window. RF measurements at pulse duration of a few milliseconds yielded an RF output power of 1.15 MW at a beam current of 40 A and a beam voltage of 84 kV. Depressed collector operation has been possible up to decelerating voltages of 33 kV without any reduction of the output power, and an efficiency of 49 % has been achieved. Long pulse operation of the gyrotron was possible with an output power of 1 MW at a pulse length of 10 s without any signs of a limitation caused by the tube. For this output power the efficiency of the tube could be increased from about 30 % without depression voltage to about 50% with depression voltage. At an output power of 640 kW, a pulse length of 140 s could be achieved.

67 citations

Patent
15 Dec 1982
TL;DR: In this paper, a plurality of series connected storage-holding circuits which store and hold the pulse magnitude of an electrical pulse signal whose amplitude is to be stored are added to compensate for a storage error with respect to the amplitude.
Abstract: A pulse signal amplitude storage-holding apparatus utilizes a plurality of series connected storage-holding circuits which store and hold the pulse magnitude of an electrical pulse signal whose amplitude is to be stored. At least one electrical pulse signal amplitude compensating circuit may be added to compensate for a storage error with respect to the pulse magnitude of the electrical pulse signal caused by the charge and discharged characteristics of each of the storage-holding circuits. In the alternative, at least one of the storage-holding circuits may be arranged so as to output an output signal accompanied by an overshoot of a fixed amount with respect to the input pulse signal, the overshoot thereby compensating for the abovenoted storage error.

67 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
93% related
Optical fiber
167K papers, 1.8M citations
85% related
Electric field
87.1K papers, 1.4M citations
84% related
Plasma
89.6K papers, 1.3M citations
84% related
Amplifier
163.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023175
2022408
2021543
2020619
2019668
2018665