scispace - formally typeset
Search or ask a question
Topic

Pulse duration

About: Pulse duration is a research topic. Over the lifetime, 19429 publications have been published within this topic receiving 286507 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: By incorporating a section of large positive-dispersion fiber in an all-fiber erbium ring laser, a fully self-starting source of 77-fs pulse with 90 pJ of energy and greater than 1 kW of peak power at a 45-MHz repetition rate is obtained.
Abstract: By incorporating a section of large positive-dispersion fiber in an all-fiber erbium ring laser, we obtain high-energy pulses with spectral widths of 56 nm. The chirp on these pulses is highly linear and can be compensated for with dispersion in the output coupling fiber lead. The result is a fully self-starting source of 77-fs pulse with 90 pJ of energy and greater than 1 kW of peak power at a 45-MHz repetition rate.

912 citations

Journal ArticleDOI
TL;DR: The historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion is reviewed and several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers are described.
Abstract: For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.

886 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of nonlinear pulse propagation in optical fibers, as governed by the nonlinear Schrodinger equation, is reformulated as a variational problem and approximate solutions are obtained for the evolution during propagation of pulse width, pulse amplitude, and nonlinear frequency chirp.
Abstract: The problem of nonlinear pulse propagation in optical fibers, as governed by the nonlinear Schr\"odinger equation, is reformulated as a variational problem. By means of Gaussian trial functions and a Ritz optimization procedure, approximate solutions are obtained for the evolution during propagation of pulse width, pulse amplitude, and nonlinear frequency chirp. Comparisons with results from inverse-scattering theory and/or numerically obtained solutions show very good agreement.

867 citations

Journal ArticleDOI
TL;DR: The saturable absorption property of the fabricated BP-SAs at the telecommunication band is characterized and shows that BP could also be developed as an effective SA for pulsed fiber or solid-state lasers.
Abstract: Black phosphorus (BP), an emerging narrow direct band-gap two-dimensional (2D) layered material that can fill the gap between the semi-metallic graphene and the wide-bandgap transition metal dichalcogenides (TMDs), had been experimentally found to exhibit the saturation of optical absorption if under strong light illumination. By taking advantage of this saturable absorption property, we could fabricate a new type of optical saturable absorber (SA) based on mechanically exfoliated BPs, and further demonstrate the applications for ultra-fast laser photonics. Based on the balanced synchronous twin-detector measurement method, we have characterized the saturable absorption property of the fabricated BP-SAs at the telecommunication band. By incorporating the BP-based SAs device into the all-fiber Erbium-doped fiber laser cavities, we are able to obtain either the passive Q-switching (with maximum pulse energy of 94.3 nJ) or the passive mode-locking operation (with pulse duration down to 946 fs). Our results show that BP could also be developed as an effective SA for pulsed fiber or solid-state lasers.

837 citations

Journal ArticleDOI
TL;DR: In this article, an experimental and theoretical investigation of the fluctuations of the pulses from continuous-wave mode-locked lasers is presented, and it is shown that these fluctuations can be detected and quantitatively characterized from measurements of the power spectrum of the light intensity.
Abstract: An experimental and theoretical investigation of the fluctuations of the pulses from continuous-wave mode-locked lasers is presented. It is shown that these fluctuations can be detected and quantitatively characterized from measurements of the power spectrum of the light intensity. Such power spectra can be measured with great accuracy by shining the laser output on a suitable photodetector and by processing the detector signal with the use of an electronic spectrum analyzer. Different types of noise such as fluctuations of the pulse energy, pulse repetition time, and pulse duration, can be readily recognized from their characteristic spectral signature. Experimental results of noise measurements are presented for a synchronously mode-locked dye laser pumped by an acousto-optically mode-locked argon ion laser, and also for a colliding pulse passively mode-locked dye laser.

761 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
93% related
Optical fiber
167K papers, 1.8M citations
85% related
Electric field
87.1K papers, 1.4M citations
84% related
Plasma
89.6K papers, 1.3M citations
84% related
Amplifier
163.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023175
2022408
2021543
2020619
2019668
2018665