scispace - formally typeset
Search or ask a question
Topic

Pulse duration

About: Pulse duration is a research topic. Over the lifetime, 19429 publications have been published within this topic receiving 286507 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is revealed that the TIs are absolutely a class of promising and reliable SAs for pulse generation at 3-μm mid-infrared waveband.
Abstract: We report an 1150-nm diode-pump passively Q-switched Ho3+-doped ZBLAN fiber laser using topological insulator (TI): Bi2Te3 as the saturable absorber (SA). The TI: Bi2Te3 prepared using the cost-effective hydrothermal intercalation/exfoliation method was dropped onto a CaF2 substrate to fabricate the free-space SA component. It has a low saturable peak intensity of 2.12 MW/cm2 and a high modulation depth of 51.3% measured at 2 μm. Inserting this component into a linear-cavity Ho3+-doped ZBLAN fiber laser, stable Q-switched pulses at 2979.9 nm were obtained with the repetition rate of 81.96 kHz and pulse duration of 1.37 μs. The achieved maximum output power and pulse energy were 327.4 mW at a slope efficiency of 11.6% and 3.99 μJ, respectively, only limited by the available pump power. Our work reveals that the TIs are absolutely a class of promising and reliable SAs for pulse generation at 3-μm mid-infrared waveband.

154 citations

Journal ArticleDOI
TL;DR: Exchanges of calcium ions through electropermeabilized membrane of Chinese hamster ovary cells were found to be asymmetrical, meaning the membrane defects are created unequally on the two cell sides during the pulse, implying a vectorial effect of the electric field on the membrane.

154 citations

Journal ArticleDOI
TL;DR: In this article, finite element techniques have been applied to predict the residual stress fields induced in two different stainless steels, combining shock wave hydrodynamics and strain rate dependent mechanical behaviour.
Abstract: Laser shock processing, also known as laser shock peening, generates through a laser-induced plasma, plastic deformation and compressive residual stresses in materials for improved fatigue or stress corrosion cracking resistances. The calculation of mechanical effects is rather complex, due to the severity of the pressure loading imparted in a very short time period (in the ns regime). This produces very high strain rates (106 s−1), which necessitate a precise determination of dynamic properties.Finite element techniques have been applied to predict the residual stress fields induced in two different stainless steels, combining shock wave hydrodynamics and strain rate dependent mechanical behaviour. The predicted residual stress fields for single or multiple laser processes were correlated with those from experimental data, with a specific focus on the influence of process parameters such as pressure pulse amplitude and duration, laser spot size or sacrificial overlay.Among other results, simulations confirmed that the affected depths increased with pulse duration, peak pressure and cyclic deformations, thus reaching much deeper layers (> 0.5 mm) than with any other conventional surface processing. To improve simulations, the use of experimental VISAR determinations to determine pressure loadings and elastic limits under shock conditions (revealing different strain-rate dependences for the two stainless steels considered) was shown to be a key point.Finally, the influence of protective coatings and, more precisely, the simulation of a thermo-mechanical uncoated laser shock processing were addressed and successfully compared with experiments, exhibiting a large tensile surface stress peak affecting a few tenths of micrometres and a compressive sub-surface stress field.

153 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied how the plasma composition and the deposition rate are influenced by the pulse duration in high-power pulsed magnetron discharges and found that for a constant discharge power, deposition rate increases as the pulse length decreases.
Abstract: High-power pulsed magnetron discharges have drawn an increasing interest as an approach to produce highly ionized metallic vapor. In this paper we propose to study how the plasma composition and the deposition rate are influenced by the pulse duration. The plasma is studied by time-resolved optical emission and absorption spectroscopies and the deposition rate is controlled thanks to a quartz microbalance. The pulse length is varied between 2.5 and 20μs at 2 and 10mTorr in pure argon. The sputtered material is titanium. For a constant discharge power, the deposition rate increases as the pulse length decreases. With 5μs pulse, for an average power of 300W, the deposition rate is ∼70% of the deposition rate obtained in direct current magnetron sputtering at the same power. The increase of deposition rate can be related to the sputtering regime. For long pulses, self-sputtering seems to occur as demonstrated by time-resolved optical emission diagnostic of the discharge. In contrary, the metallic vapor ioniz...

153 citations

Journal ArticleDOI
TL;DR: In this paper, an ultrasonic-assisted electrical discharge machining (UEDM) method was proposed to improve the efficiency of electrical discharge cutting in gas medium. But, the workpiece material is AISI 1045 steel and the electrode material is copper.
Abstract: This study focuses on using ultrasonic to improve the efficiency in electrical discharge machining (EDM) in gas medium. The new method is referred to as ultrasonic-assisted electrical discharge machining (UEDM). In the process of UEDM in gas, the tool electrode is a thin-walled pipe, the high-pressure gas medium is applied from inside, and the ultrasonic actuation is applied onto the workpiece. In our experiment, the workpiece material is AISI 1045 steel and the electrode material is copper. The experiment results indicate that (a) the Material Removal Rate (MRR) is increased with respect to the increase of the open voltage, the pulse duration, the amplitude of ultrasonic actuation, the discharge current, and the decrease of the wall thickness of electrode pipe; and (b) the surface roughness is increased with respect to the increase of the open voltage, the pulse duration, and the discharge current. Based on experimental results, a theoretical model to estimate the MRR and the surface roughness is developed.

153 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
93% related
Optical fiber
167K papers, 1.8M citations
85% related
Electric field
87.1K papers, 1.4M citations
84% related
Plasma
89.6K papers, 1.3M citations
84% related
Amplifier
163.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023175
2022408
2021543
2020619
2019668
2018665