scispace - formally typeset
Search or ask a question
Topic

Pushdown automaton

About: Pushdown automaton is a research topic. Over the lifetime, 1868 publications have been published within this topic receiving 35399 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an EXPTIME procedure for finding a winner in a pushdown game is presented, which is then used to solve the model-checking problem for the pushdown processes and the propositional μ-calculus.
Abstract: A pushdown game is a two player perfect information infinite game on a transition graph of a pushdown automaton. A winning condition in such a game is defined in terms of states appearing infinitely often in the play. It is shown that if there is a winning strategy in a pushdown game then there is a winning strategy realized by a pushdown automaton. An EXPTIME procedure for finding a winner in a pushdown game is presented. The procedure is then used to solve the model-checking problem for the pushdown processes and the propositional μ-calculus. The problem is shown to be DEXPTIME-complete.

172 citations

Patent
Mehryar Mohri1, Mark-Jan Nederhof1
18 Jul 2002
TL;DR: In this article, a context-free grammar is represented by a weighted finite-state transducer, which can be used to efficiently compile that grammar into a weighted automaton that accepts the strings allowed by the grammar with the corresponding weights.
Abstract: A context-free grammar can be represented by a weighted finite-state transducer. This representation can be used to efficiently compile that grammar into a weighted finite-state automaton that accepts the strings allowed by the grammar with the corresponding weights. The rules of a context-free grammar are input. A finite-state automaton is generated from the input rules. Strongly connected components of the finite-state automaton are identified. An automaton is generated for each strongly connected component. A topology that defines a number of states, and that uses active ones of the non-terminal symbols of the context-free grammar as the labels between those states, is defined. The topology is expanded by replacing a transition, and its beginning and end states, with the automaton that includes, as a state, the symbol used as the label on that transition. The topology can be fully expanded or dynamically expanded as required to recognize a particular input string.

171 citations

Journal ArticleDOI
Marcel Paul Schützenberger1
TL;DR: This note describes a special type of one-way, one-tape automata in the sense of Rabin and Scott that idealizes some of the elementary formal features used in the so-called “push-down store” programming techniques.
Abstract: This note describes a special type of one-way, one-tape automata in the sense of Rabin and Scott that idealizes some of the elementary formal features used in the so-called “push-down store” programming techniques. It is verified that the sets of words accepted by these automata form a proper subset of the family of the unambiguous context-free languages of Chomsky's and that this property admits a weak converse.

167 citations

Proceedings ArticleDOI
13 Jul 2004
TL;DR: This work considers the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various Probabilistic logics and proves that both qualitative and quantitative model checking for pPDA is decidable.
Abstract: We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then, we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking algorithm for general PCTL and the subclass of stateless pPDA. Finally, we consider the class of properties definable by deterministic Buchi automata, and show that both qualitative and quantitative model checking for pPDA is decidable.

164 citations

Proceedings ArticleDOI
24 Jun 2008
TL;DR: It is shown that the problem of solving parity games over the configuration graphs of order-n CPDA is n-EXPTIME complete, subsuming several well-known results about the solvability of games over higher-order pushdown graphs by (respectively) Walukiewicz, Cachat, and Knapik et al.
Abstract: Collapsible pushdown automata (CPDA) are a new kind of higher-order pushdown automata in which every symbol in the stack has a link to a stack situated somewhere below it. In addition to the higher-order push and pop operations, CPDA have an important operation called collapse, whose effect is to "collapse" a stack s to the prefix as indicated by the link from the topmost symbol of s. Our first result is that CPDA are equi-expressive with recursion schemes as generators of (possibly infinite) ranked trees. In one direction, we give a simple algorithm that transforms an order-n CPDA to an order-n recursion scheme that generates the same tree, uniformly for all n Gt= 0. In the other direction, using ideas from game semantics, we give an effective transformation of order-n recursion schemes (not assumed to be homogeneously typed, and hence not necessarily safe) to order-n CPDA that compute traversals over an abstract syntax graph of the scheme, and hence paths in the tree generated by the scheme. Our equi-expressivity result is the first automata-theoretic characterization of higher-order recursion schemes. Thus CPDA are also a characterization of the simply-typed lambda calculus with recursion (generated from uninterpreted 1st-order symbols) and of (pure) innocent strategies. An important consequence of the equi-expressivity result is that it allows us to reduce decision problems on trees generated by recursion schemes to equivalent problems on CPDA and vice versa. Thus we show, as a consequence of a recent result by Ong (modal mu-calculus model-checking of trees generated by recursion schemes is n-EXPTIME complete), that the problem of solving parity games over the configuration graphs of order-n CPDA is n-EXPTIME complete, subsuming several well-known results about the solvability of games over higher-order pushdown graphs by (respectively) Walukiewicz, Cachat, and Knapik et al. Another contribution of our work is a self-contained proof of the same solvability result by generalizing standard techniques in the field. By appealing to our equi-expressivity result, we obtain a new proof of Ong's result. In contrast to higher-order pushdown graphs, we show that the monadic second-order theories of the configuration graphs of CPDA are undecidable. It follows that -- as generators of graphs -- CPDA are strictly more expressive than higher-order pushdown automata.

160 citations


Network Information
Related Topics (5)
Time complexity
36K papers, 879.5K citations
87% related
Finite-state machine
15.1K papers, 292.9K citations
86% related
Model checking
16.9K papers, 451.6K citations
84% related
Concurrency
13K papers, 347.1K citations
84% related
String (computer science)
19.4K papers, 333.2K citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202234
202130
202052
201947
201834