scispace - formally typeset
Search or ask a question
Topic

PWM rectifier

About: PWM rectifier is a research topic. Over the lifetime, 2254 publications have been published within this topic receiving 25614 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented.
Abstract: The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

22 citations

Proceedings ArticleDOI
01 Nov 2009
TL;DR: In this paper, a hybrid offshore wind and tidal energy conversion system is proposed, where the generator is designed to achieve direct-drive application and a Permanent Magnet Synchronous Generator (PMSG) model is established in the dq-synchronous rotating frame, and Maximum Power Point Tracking (MPPT) is realized through controlling the speed of the generators using PWM controlled rectifiers.
Abstract: This paper proposes a hybrid offshore wind and tidal energy conversion system In this study, dynamic model and control schemes of this hybrid system are presented Gearless generators are designed to achieve direct-drive application A Permanent Magnet Synchronous Generator (PMSG) model is established in the dq-synchronous rotating frame, and Maximum Power Point Tracking (MPPT) is realized through controlling the speed of the generators using PWM controlled rectifiers In order to verify the presented control strategy and to study the interaction between wind and tidal energy conversion systems, MATLAB/Simulink® simulations have been conducted The results prove the potential feasibility of the proposed system topology

22 citations

Proceedings ArticleDOI
15 Nov 1993
TL;DR: In this paper, a current-controlled PWM rectifier is proposed to provide near sinusoidal input currents with unity power factor and a low output voltage ripple, which produces a well-defined input current harmonic spectrum, exhibits fast transient response to load voltage variations and is capable of regenerative operation.
Abstract: Active front-end rectifiers with reduced input current harmonics and high input power factor are becoming a must in utility interfaced applications. With forced-commutated switches, the voltage source inverter approach is superior to the conventional current source approach, in terms of number of components and control options. However, the straight-forward delta control of the rectifier is characterized by a slow response and potential stability problems. This paper proposes a current-controlled PWM rectifier as an alternative. It provides near sinusoidal input currents with unity power factor and a low output voltage ripple. Moreover, it produces a well-defined input current harmonic spectrum, exhibits fast transient response to load voltage variations and is capable of regenerative operation. PWM pattern generation is based on a carrier technique and the current controller is implemented in the: (a) stationary (abc) frame; and (b) rotating (dqo) frame. The design and the performance of the two controller options are investigated and compared. >

22 citations

16 Mar 2010
TL;DR: In this paper, the authors summarized some of the research efforts in the last four years on the improvements in power density and physical integration of power converters, mostly for vehicular applications.
Abstract: Over the past ten years, there has been increased incorporation of electronic power processing into alternative, sustainable, and distributed energy sources, as well as energy storage systems, cars, airplanes, ships, homes, data centers, and the power grid. The goals have been to reduce the size, weight, and maintenance and operational costs of these power systems, while increasing overall energy efficiency, safety, and reliability. This paper summarizes some of the authors' research efforts in the last four years on the improvements in power density and physical integration of power converters, mostly for vehicular applications. Several approaches to integration of active components into high-temperature modules are presented together with examples of the evaluation and modeling of 1.2 kV SiC JFET and MOSFET. Possible improvements in the power density through hybrid passive and active integration of an EMI filter and of an energy storage capacitor in single-phase PWM rectifier are also shown. Examples of converter integration for a 10 kW motor drive with active front-end using SiC devices operating at 250 °C, and for paralleling three-phase boost rectifiers with interleaved PWM are presented.

22 citations

Journal ArticleDOI
TL;DR: The physical simulator system developed in this article allows the performance verification of a vehicle formation on a prespecified real track and evaluation of benefits of the onboard supercapacitor ESS in real time.
Abstract: This article deals with the design and laboratory implementation of a full-scale physical simulator of an all-silicon carbide (SiC) traction motor drive for light-rail transit systems (LRTS) with onboard supercapacitor energy storage system (ESS). It consists of a pulsewidth modulation (PWM) rectifier representing the 750 V dc catenary line, a three-phase two-level PWM traction inverter to drive a three-phase squirrel-cage traction motor, a flywheel coupled to the motor shaft to represent the dynamic behavior of the transportation vehicle, a loading generator connected to the grid via a dc-link converter with active front-end, and a supercapacitor ESS containing a bidirectional dc–dc converter supplied from the common dc link. The PWM rectifier, a traction inverter, and a bidirectional dc–dc converter are all SiC power MOSFET-based converters for high efficiency and high power density. A physical simulator is a valuable tool in the design and testing of all SiC converters. It is equipped with software programs for a catenary model, rail track model, and vehicle model, and permits the performance verification of various control, modulation, and energy-saving strategies. The physical simulator system developed in this article also allows the performance verification of a vehicle formation on a prespecified real track and evaluation of benefits of the onboard supercapacitor ESS in real time.

22 citations


Network Information
Related Topics (5)
AC power
80.9K papers, 880.8K citations
83% related
Stator
112.5K papers, 814.8K citations
81% related
Electric power system
133K papers, 1.7M citations
79% related
Capacitor
166.6K papers, 1.4M citations
78% related
Control theory
299.6K papers, 3.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202326
202267
202145
202095
2019133
2018112