scispace - formally typeset
Search or ask a question
Topic

Pyrethroid

About: Pyrethroid is a research topic. Over the lifetime, 2016 publications have been published within this topic receiving 60910 citations. The topic is also known as: pyrethroids.


Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates that a modification of the voltage‐gated sodium channel protein recently shown to be associated with mutations of the para‐type sodium channel gene is present in certain strains of pyrethroid resistant A. gambiae, and describes a PCR‐based diagnostic test allowing its detection in the genome of single mosquitoes.
Abstract: Pyrethroid-impregnated bednets are playing an increasing role for combating malaria, especially in stable malaria areas. More than 90% of the current annual malaria incidence (c. 500 million clinical cases with up to 2 million deaths) is in Africa where the major vector is Anopheles gambiae s.s. As pyrethroid resistance has been reported in this mosquito, reliable and simple techniques are urgently needed to characterize and monitor this resistance in the field. In insects, an important mechanism of pyrethroid resistance is due to a modification of the voltage-gated sodium channel protein recently shown to be associated with mutations of the para-type sodium channel gene. We demonstrate here that one of these mutations is present in certain strains of pyrethroid resistant A. gambiae s.s. and describe a PCR-based diagnostic test allowing its detection in the genome of single mosquitoes. Using this test, we found this mutation in six out of seven field samples from West Africa, its frequency being closely correlated with survival to pyrethroid exposure. This diagnostic test should bring major improvement for field monitoring of pyrethroid resistance, within the framework of malaria control programmes.

940 citations

Journal ArticleDOI
TL;DR: Some of the work (done at Rothamsted Research and elsewhere) that has led to the identification of specific residues on the sodium channel that may constitute the DDT and pyrethroid binding sites are reviewed.
Abstract: The long term use of many insecticides is continually threatened by the ability of insects to evolve resistance mechanisms that render the chemicals ineffective. Such resistance poses a serious threat to insect pest control both in the UK and worldwide. Resistance may result from either an increase in the ability of the insect to detoxify the insecticide or by changes in the target protein with which the insecticide interacts. DDT, the pyrethrins and the synthetic pyrethroids (the latter currently accounting for around 17% of the world insecticide market), act on the voltage-gated sodium channel proteins found in insect nerve cell membranes. The correct functioning of these channels is essential for normal transmission of nerve impulses and this process is disrupted by binding of the insecticides, leading to paralysis and eventual death. Some insect pest populations have evolved modifications of the sodium channel protein which prevent the binding of the insecticide and result in the insect developing resistance. Here we review some of the work (done at Rothamsted Research and elsewhere) that has led to the identification of specific residues on the sodium channel that may constitute the DDT and pyrethroid binding sites.

552 citations

Journal ArticleDOI
TL;DR: The mechanisms by which pyrethroids alone are toxic are complex and become more complicated when they are co-formulated with either piperonyl butoxide or an organophosphorus insecticide, or both, as these compounds inhibit pyrethroid metabolism.
Abstract: The first pyrethroid pesticide, allethrin, was identified in 1949. Allethrin and other pyrethroids with a basic cyclopropane carboxylic ester structure are type I pyrethroids. The insecticidal activity of these synthetic pyrethroids was enhanced further by the addition of a cyano group to give α-cyano (type II) pyrethroids, such as cypermethrin. The finding of insecticidal activity in a group of phenylacetic 3-phenoxybenzyl esters, which lacked the cyclopropane ring but contained the α-cyano group (and hence were type II pyrethroids) led to the development of fenvalerate and related compounds. All pyrethroids can exist as at least four stereoisomers, each with different biological activities. They are marketed as racemic mixtures or as single isomers. In commercial formulations, the activity of pyrethroids is usually enhanced by the addition of a synergist such as piperonyl butoxide, which inhibits metabolic degradation of the active ingredient. Pyrethroids are used widely as insecticides both in the home and commercially, and in medicine for the topical treatment of scabies and headlice. In tropical countries mosquito nets are commonly soaked in solutions of deltamethrin as part of antimalarial strategies. Pyrethroids are some 2250 times more toxic to insects than mammals because insects have increased sodium channel sensitivity, smaller body size and lower body temperature. In addition, mammals are protected by poor dermal absorption and rapid metabolism to non-toxic metabolites. The mechanisms by which pyrethroids alone are toxic are complex and become more complicated when they are co-formulated with either piperonyl butoxide or an organophosphorus insecticide, or both, as these compounds inhibit pyrethroid metabolism. The main effects of pyrethroids are on sodium and chloride channels. Pyrethroids modify the gating characteristics of voltage-sensitive sodium channels to delay their closure. A protracted sodium influx (referred to as a sodium ‘tail current’) ensues which, if it is sufficiently large and/or long, lowers the action potential threshold and causes repetitive firing; this may be the mechanism causing paraesthesiae. At high pyrethroid concentrations, the sodium tail current may be sufficiently great to prevent further action potential generation and ‘conduction block’ ensues. Only low pyrethroid concentrations are necessary to modify sensory neurone function. Type II pyrethroids also decrease chloride currents through voltage-dependent chloride channels and this action probably contributes the most to the features of poisoning with type II pyrethroids. At relatively high concentrations, pyrethroids can also act on GABA-gated chloride channels, which may be responsible for the seizures seen with severe type II poisoning. Despite their extensive world-wide use, there are relatively few reports of human pyrethroid poisoning. Less than ten deaths have been reported from ingestion or following occupational exposure. Occupationally, the main route of pyrethroid absorption is through the skin. Inhalation is much less important but increases when pyrethroids are used in confined spaces. The main adverse effect of dermal exposure is paraesthesiae, presumably due to hyperactivity of cutaneous sensory nerve fibres. The face is affected most commonly and the paraesthesiae are exacerbated by sensory stimulation such as heat, sunlight, scratching, sweating or the application of water. Pyrethroid ingestion gives rise within minutes to a sore throat, nausea, vomiting and abdominal pain. There may be mouth ulceration, increased secretions and/or dysphagia. Systemic effects occur 4–8 hours after exposure. Dizziness, headache and fatigue are common, and palpitations, chest tightness and blurred vision less frequent. Coma and convulsions are the principal life-threatening features. Most patients recover within 6 days, although there were seven fatalities among 573 cases in one series and one among 48 cases in another. Management is supportive. As paraesthesiae usually resolve in 12–24 hours, specific treatment is not generally required, although topical application of dl-α tocopherol acetate (vitamin E) may reduce their severity.

499 citations

Journal ArticleDOI
TL;DR: It is demonstrated that pyrethroids, in addition to their neurotoxic effect, induce oxidative stress and lipid peroxidation in insects, and it is hypothesized that the main role of elevated GSTs in conferring resistance in N. lugens is through protecting tissues from oxidative damage.
Abstract: Selection of a laboratory colony of the brown planthopper Nilaparvata lugens with the pyrethroids permethrin and lambda-cyhalothrin increased its resistance to both insecticides. Biochemical analysis and synergistic studies with metabolic inhibitors indicated that elevated glutathione S-transferases (GSTs) with a predominant peroxidase activity conferred resistance to both pyrethroids, whereas esterases conferred part of the resistance to permethrin. Purified esterases hydrolysed permethrin at a slow rate, but incubation of either pyrethroid or their primary metabolites with partially purified GSTs had no effect on the metabolic profile. Although GSTs were sensitive to inhibition by both pyrethroids, they did not serve as binding proteins, as previously hypothesized [Grant and Matsumura (1988) Insect Biochem. 18, 615-622]. We demonstrate that pyrethroids, in addition to their neurotoxic effect, induce oxidative stress and lipid peroxidation in insects. Pyrethroid exposure induced lipid peroxides, protein oxidation and depleted reduced glutathione. Elevated GSTs in the resistant strains attenuated the pyrethroid-induced lipid peroxidation and reduced mortality, whereas their in vivo inhibition eliminated their protective role. We therefore hypothesize that the main role of elevated GSTs in conferring resistance in N. lugens is through protecting tissues from oxidative damage. Our study extends the GSTs' range of efficacy to pyrethroid insecticides and possibly explains the role of elevated GSTs in other pyrethroid-resistant insects.

490 citations

Journal ArticleDOI
TL;DR: Evidence is provided that pyrethroids can alter neuronal excitability through an action on voltage-sensitive channels other than the sodium channel, which is likely to be the principal site of pyrethroid action.
Abstract: Pyrethroid insecticides interact with a variety of neurochemical processes, but not all of these actions are likely to be involved in the disruption of nerve function. Several lines of evidence suggest that the voltage-sensitive sodium channel is the single principal molecular target site for all pyrethroids and DDT analogs in both insects and mammals. The alterations of sodium channel functions identified in both biophysical and biochemical studies are directly related to the effects of these compounds on intact nerves. The pyrethroid recognition site of the sodium channel exhibits the stringent stereospecificity predicted by in vivo estimates of intrinsic neurotoxicity in both insects and mammals. Type I and Type II compounds produce qualitatively different effects on sodium channel tail currents, divergent actions on intact nerves, and different effects on the excitability of vertebrate skeletal muscle. Moreover, compounds that are defined as intermediate in the Type I/Type II classification scheme are also intermediate in their effects on sodium channel kinetics. The range of different actions on sensory and motor nerve pathways arising from these qualitatively different effects at the level of the sodium channel appear to be sufficient to explain the distinct poisoning syndromes that have been identified in both insects and mammals. Thus, it does not appear necessary to invoke different primary target sites for Type I and Type II compounds to explain their actions in whole animals. Although the voltage-sensitive sodium channel is likely to be the principal site of pyrethroid action, it is probably not the only site involved in intoxication. Insect neurosecretory neurons are sensitive to very low concentrations of pyrethroids, and disruption of the neuroendocrine system has been implicated as a factor contributing to the irreversible effects of pyrethroid intoxication in insects. Since action potentials in these nerves are carried by calcium ions through TTX-insensitive voltage-gated cation channels, these findings provide evidence that pyrethroids can alter neuronal excitability through an action on voltage-sensitive channels other than the sodium channel. Actions on voltage-sensitive calcium channels may also be involved in the effects of pyrethroids on neurotransmitter release in mammals. The proconvulsant actions of pyrethroids mediated through the peripheral-type benzodiazepine receptor may also contribute to pyrethroid intoxication. Both Type I and Type II compounds are potent proconvulsants in vivo at doses well below those required to produce pyrethroid-dependent intoxication.(ABSTRACT TRUNCATED AT 400 WORDS)

456 citations


Network Information
Related Topics (5)
Bacillus thuringiensis
9.6K papers, 263K citations
81% related
Aedes aegypti
8.4K papers, 225.7K citations
81% related
Integrated pest management
10.4K papers, 205.5K citations
81% related
Arsenate
6.2K papers, 244K citations
79% related
Aphid
11.3K papers, 229.7K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023168
2022421
202167
202078
201976
201881