scispace - formally typeset
Search or ask a question
Topic

Pyrolysis

About: Pyrolysis is a research topic. Over the lifetime, 34918 publications have been published within this topic receiving 833524 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of the process conditions such as heating rate, temperature and particle size on the product distribution, gas composition and char reactivity was studied in a free-fall reactor at pilot scale.
Abstract: This paper deals with rapid pyrolysis of agricultural residues such as olive waste and straw at high temperature (800 -1000degreesC) in a free-fall reactor at pilot scale. The conditions are of interest for gasification in fluidized beds where rapid pyrolysis plays an important role as first stage. The objective of the work is to study the effect of the process conditions such as heating rate, temperature and particle size on the product distribution, gas composition and char reactivity. A higher temperature and smaller particles increase the heating rate resulting in a decreased char yield. The cracking of the hydrocarbons with an increase in the hydrogen content is favoured by a higher temperature and by using smaller particles. Wood gives more volatiles and less char than straw and olive waste. The higher ash content in agricultural residues favours the charring reactions. The higher lignin content in olive waste results in a higher char yield in comparison with straw. Chars from olive waste and straw are more reactive in gasification than chars from birch because of the higher ash content.

377 citations

Journal ArticleDOI
TL;DR: In this article, the effect of pyrolysis temperature and activation hold time on textural and chemical surface properties of raw date stones and carbon materials produced are studied, as expected, the percentage yield decreases with increase of activation temperature and hold time.

375 citations

Journal ArticleDOI
Haruo Kawamoto1
TL;DR: In this article, a review article summarizes the state-of-the-art research into molecular mechanisms of lignin pyrolysis and gasification, which is useful for understanding the influence of high temperature heat treatments on the properties of wood.
Abstract: Lignin, an aromatic constituent of woody biomass, is a potential renewable aromatic feedstock for a sustainable future carbon economy. Pyrolysis-based technologies, such as fast pyrolysis and gasification, are promising methods for converting lignin into biochemicals, biomaterials, and biofuels. A better understanding of the molecular mechanisms involved in lignin pyrolysis/gasification would guide the development of the controlled pyrolysis and gasification systems to overcome issues with low product selectivity, an intrinsic drawback of current pyrolysis-based technologies. This review article summaries the state-of-the-art research into molecular mechanisms of lignin pyrolysis and gasification. This information should also be useful for understanding the influence of high temperature heat treatments on the properties of wood.

375 citations

Journal ArticleDOI
01 Oct 1996-Fuel
TL;DR: In this article, the kinetics of the thermal conversion of aromatic hydrocarbons in the presence of hydrogen and steam were studied, using anphthalene, toluene and benzene as model compounds.

372 citations

Journal ArticleDOI
TL;DR: In this paper, the Edinburgh accelerated ageing tool (Edinburgh stability tool) was used to evaluate the long-term stability of biochar in three feedstocks (Pine, Rice husk and Wheat straw) at four temperatures (350, 450, 550 and 650°C).
Abstract: Biochar is the porous, carbonaceous material produced by thermochemical treatment of organic materials in an oxygen-limited environment. In general, most biochar can be considered resistant to chemical and biological decomposition, and therefore suitable for carbon (C) sequestration. However, to assess the C sequestration potential of different types of biochar, a reliable determination of their stability is needed. Several techniques for assessing biochar stability have been proposed, e.g. proximate analysis, oxygen (O): C ratio and hydrogen (H): C ratio; however, none of them are yet widely recognized nor validated for this purpose. Biochar produced from three feedstocks (Pine, Rice husk and Wheat straw) at four temperatures (350, 450, 550 and 650 °C) and two heating rates (5 and 100 °C min−1) was analysed using three methods of stability determination: proximate analysis, ultimate analysis and a new analytical tool developed at the UK Biochar Research Centre known as the Edinburgh accelerated ageing tool (Edinburgh stability tool). As expected, increased pyrolysis temperatures resulted in higher fractions of stable C and total C due to an increased release of volatiles. Data from the Edinburgh stability tool were compared with those obtained by the other methods, i.e. fixed C, volatile matter, O : C and H : C ratios, to investigate potential relationships between them. Results of this comparison showed that there was a strong correlation (R > 0.79) between the stable C determined by the Edinburgh stability tool and fixed C, volatile matter and O : C, however, H : C showed a weaker correlation (R = 0.65). An understanding of the influence of feedstock and production conditions on the long-term stability of biochar is pivotal for its function as a C mitigation measure, as production and use of unstable biochar would result in a relatively rapid return of C into the atmosphere, thus potentially intensifying climate change rather than alleviating it.

372 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
87% related
Carbon
129.8K papers, 2.7M citations
85% related
Adsorption
226.4K papers, 5.9M citations
85% related
Catalysis
400.9K papers, 8.7M citations
84% related
Photocatalysis
67K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,262
20226,570
20212,345
20202,434
20192,411