scispace - formally typeset
Search or ask a question
Topic

Pyrolysis

About: Pyrolysis is a research topic. Over the lifetime, 34918 publications have been published within this topic receiving 833524 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple, first order, high activation energy (ca. 238 kJ/mol) model accurately describes the pyrolytic decomposition of an extraordinary variety of cellulosic substrates.
Abstract: Recent advances in experimental methods and computer modeling have shed new light on the kinetics of cellulose pyrolysis. The rich slate of reaction products that evolve when cellulose is heated implies that the pyrolysis chemistry is exceedingly complex. Nevertheless, a simple, first order, high activation energy (ca. 238 kJ/mol) model accurately describes the pyrolytic decomposition of an extraordinary variety of cellulosic substrates. Secondary vapor-solid interactions are the main source of char formed during cellulose pyrolysis. When a whole biomass substrate is pretreated to remove mineral matter, the pyrolysis kinetics of its cellulose component are very similar to those of pure cellulose. Future work should focus on the effects of mineral matter on pyrolysis, and the secondary vapor-solid reactions which govern char formation.

869 citations

Journal ArticleDOI
D. W. van Krevelen1
01 Aug 1975-Polymer
TL;DR: In this paper, it was shown that the amount of char and the incombustible gases that may be formed in thermal decomposition are very important quantitative measures of flame resistance.

855 citations

Journal ArticleDOI
TL;DR: The influence of surface modification of activated carbon with gaseous ammonia on adsorption properties toward carbon dioxide (CO2) was reviewed in this paper, where two different methods, heat treatment and ammonia treatment (amination) for producing activated carbon had been compared and amination was found to be suitable modification technique for obtaining efficient CO2 adsorbents.

853 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the agronomic potential of biochar produced from poultry litter, peanut hulls, and pine chips produced at 400°C and 500°C with or without steam activation.
Abstract: The removal of crop residues for bio-energy production reduces the formation of soil organic carbon (SOC) and therefore can have negative impacts on soil fertility. Pyrolysis (thermoconversion of biomass under anaerobic conditions) generates liquid or gaseous fuels and a char (biochar) recalcitrant against decomposition. Biochar can be used to increase SOC and cycle nutrients back into agricultural fields. In this case, crop residues can be used as a potential energy source as well as to sequester carbon (C) and improve soil quality. To evaluate the agronomic potential of biochar, we analyzed biochar produced from poultry litter, peanut hulls, and pine chips produced at 400°C and 500°C with or without steam activation. The C content of the biochar ranged from 40% in the poultry litter (PL) biochar to 78% in the pine chip (PC) biochar. The total and Mehlich I extractable nutrient concentrations in the biochar were strongly influenced by feedstock. Feedstock nutrients (P, K, Ca, Mg) were concentrated in the biochar and were significantly higher in the biochars produced at 500°C. A large proportion of N was conserved in the biochar, ranging from 27.4% in the PL biochar to 89.6% in the PC biochar. The amount of N conserved was inversely proportional to the feedstock N concentration. The cation exchange capacity was significantly higher in biochar produced at lower temperature. The results indicate that, depending on feedstock, some biochars have potential to serve as nutrient sources as well as sequester C.

852 citations

Journal ArticleDOI
TL;DR: In this article, the impact of pyrolysis temperature and the type of biomass on the physicochemical characteristics of biochar and its impact on soil fertility is discussed, and a review succinctly presents the impact.
Abstract: Biochar is a pyrogenous, organic material synthesized through pyrolysis of different biomass (plant or animal waste). The potential biochar applications include: (1) pollution remediation due to high CEC and specific surface area; (2) soil fertility improvement on the way of liming effect, enrichment in volatile matter and increase of pore volume, (3) carbon sequestration due to carbon and ash content, etc. Biochar properties are affected by several technological parameters, mainly pyrolysis temperature and feedstock kind, which differentiation can lead to products with a wide range of values of pH, specific surface area, pore volume, CEC, volatile matter, ash and carbon content. High pyrolysis temperature promotes the production of biochar with a strongly developed specific surface area, high porosity, pH as well as content of ash and carbon, but with low values of CEC and content of volatile matter. This is most likely due to significant degree of organic matter decomposition. Biochars produced from animal litter and solid waste feedstocks exhibit lower surface areas, carbon content, volatile matter and high CEC compared to biochars produced from crop residue and wood biomass, even at higher pyrolysis temperatures. The reason for this difference is considerable variation in lignin and cellulose content as well as in moisture content of biomass. The physicochemical properties of biochar determine application of this biomaterial as an additive to improve soil quality. This review succinctly presents the impact of pyrolysis temperature and the type of biomass on the physicochemical characteristics of biochar and its impact on soil fertility.

849 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
87% related
Carbon
129.8K papers, 2.7M citations
85% related
Adsorption
226.4K papers, 5.9M citations
85% related
Catalysis
400.9K papers, 8.7M citations
84% related
Photocatalysis
67K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,262
20226,570
20212,345
20202,434
20192,411