scispace - formally typeset
Search or ask a question

Showing papers on "Pyruvate dehydrogenase kinase published in 2020"


Journal ArticleDOI
TL;DR: Melatonin reprograms glucose metabolism in cancer cells to a normal cell phenotype and serves as a necessary co-factor for the rate-limiting enzyme in melatonin synthesis, thus ensuring melatonin production in mitochondria of normal cells.
Abstract: In cancer cells, glucose is primarily metabolized to pyruvate and then to lactate in the cytosol. By allowing the conversion of pyruvate to acetyl-CoA in mitochondria, melatonin reprograms glucose metabolism in cancer cells to a normal cell phenotype. Acetyl-CoA in the mitochondria also serves as a necessary co-factor for the rate-limiting enzyme in melatonin synthesis, thus ensuring melatonin production in mitochondria of normal cells.

73 citations


Journal ArticleDOI
TL;DR: MCT-RVfib manifest a DNMT1-HIF-1α-PDK–mediated, chamber-specific, metabolic memory that promotes collagen production and RV fibrosis and is a potential antifibrotic therapeutic target.
Abstract: Rationale: Right ventricular (RV) fibrosis in pulmonary arterial hypertension contributes to RV failure. While RV fibrosis reflects changes in the function of resident RV fibroblasts (RVfib), these...

66 citations


Journal ArticleDOI
TL;DR: The findings provide the basis for the therapeutic implication of hordenine and its derivatives in lung cancer and PDK3-related diseases after required in vivo validation.
Abstract: Design and development of potential pyruvate dehydrogenase kinase 3 (PDK3) inhibitors have gained attention because of their possible therapeutic uses in lung cancer therapy. In the present study, the binding affinity of naturally occurring alkaloids, hordenine, vincamine, tryptamine, cinchonine, and colcemid was measured with PDK3. The molecular docking and fluorescence binding studies suggested that all these compounds show a considerable binding affinity for PDK3. Among them, the affinity of hordenine to the PDK3 was excellent (K = 106 M−1) which was further complemented by isothermal titration calorimetric measurements. Hordenine binds in the active site pocket of PDK3 and forms a significant number of non-covalent interactions with functionally important residues. All-atom molecular dynamics (MD) simulation study suggested that the PDK3-hordenine complex is stabilized throughout the trajectory of 100ns and leads to fewer conformational changes. The enzyme inhibition studies showed that hordenine inhibits the activity of PDK3 with an IC50 value of 5.4 µM. Furthermore, hordenine showed a cytotoxic effect on human lung cancer cells (A549 and H1299) with an admirable IC50 value. However, it did not inhibit the growth of HEK293 cells up to 200 µM, indicating its non-toxicity to non-cancerous cell lines. In summary, our findings provide the basis for the therapeutic implication of hordenine and its derivatives in lung cancer and PDK3-related diseases after required in vivo validation.

65 citations


Journal ArticleDOI
22 Sep 2020-ACS Nano
TL;DR: TME modulation by a mitochondrion-targeted nanoparticle (NP) of a PDK 1 inhibitor is demonstrated that the targeted NP can bring alterations in TME which result in increased immunological activation against cancer cells.
Abstract: Cancer cells are known to be glycolytic, driving increased glucose consumption and its conversion to lactate. This process modulates the tumor microenvironment (TME). In the TME, glycolytically activated immune cells often become anergic, leading to an increase in immune checkpoint proteins such as programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). Most glycolytic inhibitors not only inhibit glycolysis of cancer but also of immune cells. Therefore, using a nanoparticle-delivered agent to preferentially inhibit glycolysis in tumor cells, and not in immune cells, has the potential to attenuate the expression of checkpoint proteins. Pyruvate dehydrogenase kinase 1 (PDK1) can be an important target to achieve tumor specific glycolysis inhibition. We report TME modulation by a mitochondrion-targeted nanoparticle (NP) containing a prodrug of dichloroacetate (DCA), a PDK1 inhibitor. We demonstrated that the targeted NP alters the TME which results in increased immunological activation against cancer cells, causing a decrease in mean tumor volume. Here, we also show findings that when Mito-DCA, a prodrug of DCA, was combined with anti-PD-1, a checkpoint inhibitor, results from in vivo syngeneic models showed an upregulation in the number of tumor infiltrating lymphocytes. This work provides a platform to bring therapeutic efficacy by selectively inhibiting glycolysis of cancer cells.

60 citations


Journal ArticleDOI
TL;DR: It is hypothesize that melatonin functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruVate to acetyl CoA in the mitochondria, as do other gly colytic drugs.
Abstract: Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large variety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin’s interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glycolysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the same treatment when melatonin is applied.

51 citations


Journal ArticleDOI
TL;DR: The results suggest metabolic alterations as an onco-requisite factor of pHGG tumorigenesis and targeting reduced mtDNA quantity represents a promising therapeutic strategy for pHGG.
Abstract: Background Despite increased understanding of the genetic events underlying pediatric high-grade gliomas (pHGGs), therapeutic progress is static, with poor understanding of nongenomic drivers. We therefore investigated the role of alterations in mitochondrial function and developed an effective combination therapy against pHGGs. Methods Mitochondrial DNA (mtDNA) copy number was measured in a cohort of 60 pHGGs. The implication of mtDNA alteration in pHGG tumorigenesis was studied and followed by an efficacy investigation using patient-derived cultures and orthotopic xenografts. Results Average mtDNA content was significantly lower in tumors versus normal brains. Decreasing mtDNA copy number in normal human astrocytes led to a markedly increased tumorigenicity in vivo. Depletion of mtDNA in pHGG cells promoted cell migration and invasion and therapeutic resistance. Shifting glucose metabolism from glycolysis to mitochondrial oxidation with the adenosine monophosphate-activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) or the pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA) significantly inhibited pHGG viability. Using DCA to shift glucose metabolism to mitochondrial oxidation and then metformin to simultaneously target mitochondrial function disrupted energy homeostasis of tumor cells, increasing DNA damage and apoptosis. The triple combination with radiation therapy, DCA and metformin led to a more potent therapeutic effect in vitro and in vivo. Conclusions Our results suggest metabolic alterations as an onco-requisite factor of pHGG tumorigenesis. Targeting reduced mtDNA quantity represents a promising therapeutic strategy for pHGG.

43 citations


OtherDOI
TL;DR: Understanding the molecular mechanism regulating mitochondrial metabolism and dynamics has permitted identification of new biomarkers, nuclear and CT imaging modalities, and new therapeutic targets for PAH.
Abstract: In lung vascular cells, mitochondria serve a canonical metabolic role, governing energy homeostasis. In addition, mitochondria exist in dynamic networks, which serve noncanonical functions, including regulation of redox signaling, cell cycle, apoptosis, and mitochondrial quality control. Mitochondria in pulmonary artery smooth muscle cells (PASMC) are oxygen sensors and initiate hypoxic pulmonary vasoconstriction. Acquired dysfunction of mitochondrial metabolism and dynamics contribute to a cancer-like phenotype in pulmonary arterial hypertension (PAH). Acquired mitochondrial abnormalities, such as increased pyruvate dehydrogenase kinase (PDK) and pyruvate kinase muscle isoform 2 (PKM2) expression, which increase uncoupled glycolysis (the Warburg phenomenon), are implicated in PAH. Warburg metabolism sustains energy homeostasis by the inhibition of oxidative metabolism that reduces mitochondrial apoptosis, allowing unchecked cell accumulation. Warburg metabolism is initiated by the induction of a pseudohypoxic state, in which DNA methyltransferase (DNMT)-mediated changes in redox signaling cause normoxic activation of HIF-1α and increase PDK expression. Furthermore, mitochondrial division is coordinated with nuclear division through a process called mitotic fission. Increased mitotic fission in PAH, driven by increased fission and reduced fusion favors rapid cell cycle progression and apoptosis resistance. Downregulation of the mitochondrial calcium uniporter complex (MCUC) occurs in PAH and is one potential unifying mechanism linking Warburg metabolism and mitochondrial fission. Mitochondrial metabolic and dynamic disorders combine to promote the hyperproliferative, apoptosis-resistant, phenotype in PAH PASMC, endothelial cells, and fibroblasts. Understanding the molecular mechanism regulating mitochondrial metabolism and dynamics has permitted identification of new biomarkers, nuclear and CT imaging modalities, and new therapeutic targets for PAH. © 2020 American Physiological Society. Compr Physiol 10:713-765, 2020.

38 citations


Journal ArticleDOI
TL;DR: The results indicated that high expressions of PDK2 and PDK3 , especially the latter, were poor prognostic factors of AML, and the effect could be overcome by allo-HSCT.
Abstract: Acute myeloid leukemia (AML) is a hematological malignancy characterized by the proliferation of immature myeloid cells, with impaired differentiation and maturation. Pyruvate dehydrogenase kinase (PDK) is a pyruvate dehydrogenase complex (PDC) phosphatase inhibitor that enhances cell glycolysis and facilitates tumor cell proliferation. Inhibition of its activity can induce apoptosis of tumor cells. Currently, little is known about the role of PDKs in AML. Therefore, we screened The Cancer Genome Atlas (TCGA) database for de novo AML patients with complete clinical information and PDK family expression data, and 84 patients were included for the study. These patients did not undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Univariate analysis showed that high expression of PDK2 was associated with shorter EFS (P = 0.047), and high expression of PDK3 was associated with shorter OS (P = 0.026). In multivariate analysis, high expression of PDK3 was an independent risk factor for EFS and OS (P 0.05). Our results indicated that high expressions of PDK2 and PDK3, especially the latter, were poor prognostic factors of AML, and the effect could be overcome by allo-HSCT.

35 citations


Journal ArticleDOI
TL;DR: It is revealed that PDK2 ablation or inhibition in mouse astrocytes attenuates diabetes-induced hypothalamic inflammation and subsequent alterations in feeding behavior.
Abstract: Hypothalamic inflammation plays an important role in disrupting feeding behavior and energy homeostasis as well as in the pathogenesis of obesity and diabetes. Here, we show that pyruvate dehydrogenase kinase (PDK)-2 plays a role in hypothalamic inflammation and its sequelae in mouse models of diabetes. Cell type-specific genetic ablation and pharmacological inhibition of PDK2 in hypothalamic astrocytes suggest that hypothalamic astrocytes are involved in the diabetic phenotype. We also show that the PDK2-lactic acid axis plays a regulatory role in the observed metabolic imbalance and hypothalamic inflammation in mouse primary astrocyte and organotypic cultures, through the AMPK signaling pathway and neuropeptidergic circuitry governing feeding behavior. Our findings reveal that PDK2 ablation or inhibition in mouse astrocytes attenuates diabetes-induced hypothalamic inflammation and subsequent alterations in feeding behavior.

33 citations


Journal ArticleDOI
29 Jun 2020-Cancers
TL;DR: The identified cancer-specific metabolic transformations provided new therapeutic targets for the development of small molecule inhibitors, including α-lipoic acid derivative CPI-613, an inhibitor of both PDC and KGDH, and delineate its anti-tumor effects for targeted therapy.
Abstract: Colorectal cancer (CRC) is among the most frequent cancer entities worldwide Multiple factors are causally associated with CRC development, such as genetic and epigenetic alterations, inflammatory bowel disease, lifestyle and dietary factors During malignant transformation, the cellular energy metabolism is reprogrammed in order to promote cancer cell growth and proliferation In this review, we first describe the main alterations of the energy metabolism found in CRC, revealing the critical impact of oncogenic signaling and driver mutations in key metabolic enzymes Then, the central role of mitochondria and the tricarboxylic acid (TCA) cycle in this process is highlighted, also considering the metabolic crosstalk between tumor and stromal cells in the tumor microenvironment The identified cancer-specific metabolic transformations provided new therapeutic targets for the development of small molecule inhibitors Promising agents are in clinical trials and are directed against enzymes of the TCA cycle, including isocitrate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase (KGDH) Finally, we focus on the α-lipoic acid derivative CPI-613, an inhibitor of both PDC and KGDH, and delineate its anti-tumor effects for targeted therapy

33 citations


Journal ArticleDOI
TL;DR: Investigation of the biological effects of CA9-silencing in breast cancer cell lines found that CAIX-downregulation in hypoxia led to increased levels of let-7 (lethal-7) family members, and regulation of the LIN28/let-7 axis augments glycolytic metabolism and enhances stem cell markers expression during CAix-mediated adaptation to Hypoxia and acidosis in carcinogenesis.
Abstract: Solid tumors, including breast cancer, are characterized by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. Hypoxia marker, carbonic anhydrase IX (CAIX), is a pH regulator providing a selective survival advantage to cancer cells through intracellular neutralization while facilitating tumor invasion by extracellular acidification. The expression of CAIX in breast cancer patients is associated with poor prognosis and metastases. Importantly, CAIX-positive hypoxic tumor regions are enriched in cancer stem cells (CSCs). Here we investigated the biological effects of CA9-silencing in breast cancer cell lines. We found that CAIX-downregulation in hypoxia led to increased levels of let-7 (lethal-7) family members. Simultaneously with the increase of let-7 miRNAs in CAIX-suppressed cells, LIN28 protein levels decreased, along with downstream metabolic pathways: pyruvate dehydrogenase kinase 1 (PDK1) and phosphorylation of its substrate, pyruvate dehydrogenase (PDH) at Ser-232, causing attenuation of glycolysis. In addition to perturbed glycolysis, CAIX-knockouts, in correlation with decreased LIN28 (as CSC reprogramming factor), also exhibit reduction of the further CSC-associated markers NANOG (Homeobox protein NANOG) and ALDH1 (Aldehyde dehydrogenase isoform 1). Oppositely, overexpression of CAIX leads to the enhancement of LIN28, ALDH1, and NANOG. In conclusion, CAIX-driven regulation of the LIN28/let-7 axis augments glycolytic metabolism and enhances stem cell markers expression during CAIX-mediated adaptation to hypoxia and acidosis in carcinogenesis.

Journal ArticleDOI
TL;DR: A novel nucleus-encoded mitochondrial membrane protein, ANKRD22, which was upregulated in CCICs was found to be induced by the p38/MAX pathway activated by different TME stimuli, which promotes the metabolic reprogramming of CRC cells.
Abstract: Background: The leading cause of poor prognosis in colorectal cancer (CRC) is the presence of colorectal cancer-initiating cells (CCICs). The interplay between the tumor microenvironment (TME) and CRC cells induces reacquisition of initiating cell characteristics, but the underlying mechanisms remain elusive. Methods: Candidate molecules were screened by global differential cDNA expression profiles of CCICs, which were enriched from patient-derived tumor xenograft models. Luciferase reporters and chromatin immunoprecipitation assays were used to explore the mechanism of TME factors regulating the transcription of ANKRD22. The effects of Ankyrin repeat domain-containing protein 22 (ANKRD22) on energy metabolism were monitored by extracellular flux and 13C-based metabolic flux analysis. Mass spectrometry was used to identify the interacting partners of ANKRD22. Morphological changes of CCICs overexpressing ANKRD22 were observed by electron microscopy. The effects of ANKRD22 on mitochondrial lipid metabolism were analyzed by lipidomics. Results: We identified a novel nucleus-encoded mitochondrial membrane protein, ANKRD22, which was upregulated in CCICs. We found that ANKRD22 was induced by the p38/MAX pathway activated by different TME stimuli. As a key transcription factor, MAX promoted the transcription of ANKRD22. Expression of ANKRD22 promoted glycolysis associated with a decrease in ATP/ADP and an increase in AMP/ATP levels, which were related to its interaction with pyruvate dehydrogenase kinase isoform 1 (PDK1) and multiple subunits of ATP synthase. Further, in CCICs, ANKRD22 cooperated with the lipid transport protein, Extended Synaptotagmin-1 (E-Syt1), to transport excess lipids into mitochondria and reduced the number of mitochondria in an autophagy-independent manner, thus meeting the metabolic requirements of CCICs. Conclusion: ANKRD22 induced by TME promotes the metabolic reprogramming of CRC cells. Our study has identified ANKRD22/E-Syt1 as a potential target for eradicating CCICs.

Journal ArticleDOI
TL;DR: In this paper, a metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis-known as the Warburg effect-is characteristic for many cancers.
Abstract: A metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis-known as the Warburg effect-is characteristic for many cancers. It gives the cancer cells a survival advantage in the hypoxic tumor microenvironment and protects them from cytotoxic effects of oxidative damage and apoptosis. The main regulators of this metabolic shift are the pyruvate dehydrogenase complex and pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK is known to be overexpressed in several cancers and is associated with bad prognosis and therapy resistance. Whereas the expression of PDK1-3 is tissue specific, PDK4 expression is dependent on the energetic state of the whole organism. In contrast to other PDK isoforms, not only oncogenic, but also tumor suppressive functions of PDK4 have been reported. In tumors that profit from high OXPHOS and high de novo fatty acid synthesis, PDK4 can have a protective effect. This is the case for prostate cancer, the most common cancer in men, and makes PDK4 an interesting therapeutic target. While most work is focused on PDK in tumors characterized by high glycolytic activity, little research is devoted to those cases where PDK4 acts protective and is therefore highly needed.

Journal ArticleDOI
TL;DR: The experiments confirmed that the miR‐128‐3p/PDK1 axis played a pivotal role in cancer cell metabolism and growth, and suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of PDK1, might act as a potential therapeutic target for glioma treatment.
Abstract: Glioma, like most cancers, possesses a unique bioenergetic state of aerobic glycolysis known as the Warburg effect, which is a dominant phenotype of most tumor cells. Glioma tumors exhibit high glycolytic metabolism with increased lactate production. Data derived from the gene expression profiling interactive analysis (GEPIA) database show that pyruvate dehydrogenase kinase 1 (PDK1) is significantly highly expressed in glioma tissues compared with corresponding normal tissues. PDK1 is a key enzyme in the transition of glycolysis to tricarboxylic acid cycle, via inactivating PDH and converting oxidative phosphorylation to Warburg effect, resulting in increment of lactate production. Silencing of PDK1 expression resulted in reduced lactate and ATP, accumulation of ROS, mitochondrial damage, decreased cell growth, and increased cell apoptosis. Aberrant expression of miR-128 has been observed in many human malignancies. Mechanistically, we discover that overexpressed miR-128-3p disturbs the Warburg effect in glioma cells via reducing PDK1. Our experiments confirmed that the miR-128-3p/PDK1 axis played a pivotal role in cancer cell metabolism and growth. Collectively, these findings suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of PDK1, might act as a potential therapeutic target for glioma treatment.

Journal ArticleDOI
TL;DR: This study provides new mechanistic insight that the DCA‐stimulated PDC homeostat reconfigures the TCA cycle and promotes anabolic energetics in monocytes by reducing levels of the catabolic mediator itaconate.
Abstract: The pyruvate dehydrogenase complex (PDC)/pyruvate dehydrogenase kinase (PDK) axis directs the universal survival principles of immune resistance and tolerance in monocytes by controlling anabolic and catabolic energetics. Immune resistance shifts to immune tolerance during inflammatory shock syndromes when inactivation of PDC by increased PDK activity disrupts the tricarboxylic acid (TCA) cycle support of anabolic pathways. The transition from immune resistance to tolerance also diverts the TCA cycle from citrate-derived cis-aconitate to itaconate, a recently discovered catabolic mediator that separates the TCA cycle at isocitrate and succinate dehydrogenase (SDH). Itaconate inhibits succinate dehydrogenase and its anabolic role in mitochondrial ATP generation. We previously reported that inhibiting PDK in septic mice with dichloroacetate (DCA) increased TCA cycle activity, reversed septic shock, restored innate and adaptive immune and organ function, and increased survival. Here, using unbiased metabolomics in a monocyte culture model of severe acute inflammation that simulates sepsis reprogramming, we show that DCA-induced activation of PDC restored anabolic energetics in inflammatory monocytes while increasing TCA cycle intermediates, decreasing itaconate, and increasing amino acid anaplerotic catabolism of branched-chain amino acids (BCAAs). Our study provides new mechanistic insight that the DCA-stimulated PDC homeostat reconfigures the TCA cycle and promotes anabolic energetics in monocytes by reducing levels of the catabolic mediator itaconate. It further supports the theory that PDC is an energy sensing and signaling homeostat that restores metabolic and energy fitness during acute inflammation.

Journal ArticleDOI
TL;DR: Changes in mitochondrial morphology, PDH expression and activity, and PDK/PDP expression in CKD patient muscle are explored.
Abstract: Aim Muscle weakness is commonly among chronic kidney disease (CKD) patients. Muscle mitochondrial dysfunction and decreased pyruvate dehydrogenase (PDH) activity occur in CKD animals but have not been confirmed in humans, and changes in pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP) expression have not been evaluated in CKD muscle. We presume that the reduction of muscle mitochondria and post-translational modification of PDH may cause muscle weakness in CKD patients. Herein, we explored changes in mitochondrial morphology, PDH expression and activity, and PDK/PDP expression in CKD patient muscle. Methods Twenty patients with stage 4-5 CKD (CKD group) and 24 volunteers (control group) were included. Clinical characteristics, biochemical information and handgrip strength (HGS) were determined. Skeletal muscle samples were collected from eight stage 5 CKD patients from CKD group. Other eight non-CKD surgical subjects' muscle samples were collected as control. PDH activity was determined using a PDH enzyme activity assay kit, and real-time PCR and western blotting analyses were performed to measure gene expression and protein levels, respectively. Transmission electron microscopy was used to study mitochondria morphology. Results CKD patients had lower HGS than non-CKD subjects, and HGS was correlated with gender, age, haemoglobin and albumin. Mitochondria were decreased in end-stage renal disease (ESRD) patients muscle. Mfn-1 expression and phospho-Drp1(S637)/Drp1 ratio were inhibited in the ESRD group, implicating dysfunctional mitochondrial dynamics. Muscle PDH activity and phospho-PDH(S293) were decreased in ESRD patient muscle, while PDK4 protein level was up regulated. Conclusion Decreased mitochondria and PDH deficiency caused by up regulation of PDK 4 contribute to muscle dysfunction, and could be responsible for muscle weakness in CKD patients.

Journal ArticleDOI
TL;DR: Results show that pyruvate dehydrogenase kinase inhibition improves the contractile reserve and decreases hypertrophy by augmenting carbohydrate metabolism in porcine heart failure.
Abstract: In heart failure, myocardial overload causes vast metabolic changes that impair cardiac energy production and contribute to deterioration of contractile function. However, metabolic therapy is not used in heart failure care. We aimed to investigate the interplay between cardiac function and myocardial carbohydrate metabolism in a large animal heart failure model. Using magnetic resonance spectroscopy with hyperpolarized pyruvate and magnetic resonance imaging at rest and during pharmacological stress, we investigated the in-vivo cardiac pyruvate metabolism and contractility in a porcine model of chronic pulmonary insufficiency causing right ventricular volume overload. To assess if increasing the carbohydrate metabolic reserve improves the contractile reserve, a group of animals were fed dichloroacetate, an activator of pyruvate oxidation. Volume overload caused heart failure with decreased pyruvate dehydrogenase flux and poor ejection fraction reserve. The animals treated with dichloroacetate had a larger contractile response to dobutamine stress than non-treated animals. Further, dichloroacetate prevented myocardial hypertrophy. The in-vivo metabolic data were validated by mitochondrial respirometry, enzyme activity assays and gene expression analyses. Our results show that pyruvate dehydrogenase kinase inhibition improves the contractile reserve and decreases hypertrophy by augmenting carbohydrate metabolism in porcine heart failure. The approach is promising for metabolic heart failure therapy.

Journal ArticleDOI
TL;DR: A previously unknown regulatory mechanism of IL-10 in activated macrophages involving an immunometabolic function of PDK is uncovered and uncovers a critical determinant of immune cell function.
Abstract: Interleukin-10 (IL-10) is the most potent anti-inflammatory cytokine in the body and plays an essential role in determining outcomes of many inflammatory diseases. Cellular metabolism is a critical determinant of immune cell function; however, it is currently unclear whether metabolic processes are specifically involved in IL-10 production. In this study, we aimed to find the central metabolic molecule regulating IL-10 production of macrophages, which are the main producers of IL-10. Transcriptomic analysis identified that metabolic changes were predominantly enriched in Kupffer cells at the early inflammatory phase of a mouse endotoxemia model. Among them, pyruvate dehydrogenase kinase (PDK)-dependent acute glycolysis was negatively involved in IL-10 production. Inhibition or knockdown of PDK selectively increased macrophage IL-10 expression. Mechanistically, PDK inhibition increased IL-10 production via profound phosphorylation of adenosine monophosphate (AMP)-activated protein kinase alpha 1 (AMPKα1) by restricting glucose uptake in lipopolysaccharide-stimulated macrophages. AMPKα1 consequently activated p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and cyclic AMP-responsive element-binding protein to regulate IL-10 production. Our study uncovers a previously unknown regulatory mechanism of IL-10 in activated macrophages involving an immunometabolic function of PDK.

Journal ArticleDOI
Yan Qian1, Xu Wu1, Haixiao Wang1, Guowei Hou1, Xiao Han1, Wei Song1 
TL;DR: It is revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin and was closely associated with the shorter overall survival of GC patients.
Abstract: The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.

Journal ArticleDOI
TL;DR: Evidence that the Ketogenic Diet acts directly on each of the mechanisms leading to hyperinsulinemia in BD is reviewed and it is proposed that a trial of KD in BD with a mechanistic component is needed to further investigate the role of IR in BD.

Journal ArticleDOI
TL;DR: The results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses, paving the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.
Abstract: Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.

Journal ArticleDOI
TL;DR: Data indicated that leptin mediates the protection of H2S against PD, which involves enhancing the Warburg effect of the substantia nigra.

Journal ArticleDOI
TL;DR: DET attenuates LPS-induced interleukin-1β and high-mobility group box 1 (HMGB1) release in vitro and in vivo and protected mice against lethal endotoxemia and provided a novel mechanism for DET suppression of macrophages activation implicated in anti-inflammatory therapy.

Journal ArticleDOI
TL;DR: It is identified that TGF-β1 downregulates acetyl-CoA biosynthesis via regulation of the pyruvate dehydrogenase complex (PDC) and regulates fibroblast activation via effects on PDC activity.
Abstract: TGF-β1 reprograms metabolism in renal fibroblasts, inducing a switch from oxidative phosphorylation to aerobic glycolysis. However, molecular events underpinning this are unknown. Here we identify that TGF-β1 downregulates acetyl-CoA biosynthesis via regulation of the pyruvate dehydrogenase complex (PDC). Flow cytometry showed that TGF-β1 reduced the PDC subunit PDH-E1α in fibroblasts derived from injured, but not normal kidneys. An increase in expression of PDH kinase 1 (PDK1), and reduction in the phosphatase PDP1, were commensurate with net phosphorylation and inactivation of PDC. Over-expression of mutant PDH-E1α, resistant to phosphorylation, ameliorated effects of TGF-β1, while inhibition of PDC activity with CPI-613 was sufficient to induce αSMA and pro-collagen I expression, markers of myofibroblast differentiation and fibroblast activation. The effect of TGF-β1 on PDC activity, acetyl-CoA, αSMA and pro-collagen I was also ameliorated by sodium dichloroacetate, a small molecule inhibitor of PDK. A reduction in acetyl-CoA, and therefore acetylation substrate, also resulted in a generalised loss of protein acetylation with TGF-β1. In conclusion, TGF-β1 in part regulates fibroblast activation via effects on PDC activity.

Journal ArticleDOI
TL;DR: HsA is a PDK1 inhibitor that can reduce the growth of colorectal cancer and consequent activation of mitochondrial ROS-dependent apoptotic pathway both in vivo and in vitro, and suggested that HsA might be a potential candidate for developing a novel anti-cancer drug through suppressing cancer metabolism.
Abstract: Most cancer cells primarily produce their energy through a high rate of glycolysis followed by lactic acid fermentation even in the presence of abundant oxygen. Pyruvate dehydrogenase kinase (PDK) 1, an enzyme responsible for aerobic glycolysis via phosphorylating and inactivating pyruvate dehydrogenase (PDH) complex, is commonly overexpressed in tumors and recognized as a therapeutic target in colorectal cancer. Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata Bunge (Compositae). Here, we report that HsA is a PDK1 inhibitor can reduce the growth of colorectal cancer and consequent activation of mitochondrial ROS-dependent apoptotic pathway both in vivo and in vitro. Computational simulation and biochemical assays showed that HsA directly binds to the lipoamide-binding site of PDK1, and subsequently inhibits the interaction of PDK1 with the E2 subunit of PDH complex. As a result of PDK1 inhibition, lactate production was decreased, but oxygen consumption was increased. Mitochondrial ROS levels and mitochondrial damage were also increased. Consistent with these observations, the apoptosis of colorectal cancer cells was promoted by HsA with enhanced activation of caspase-3 and -9. These results suggested that HsA might be a potential candidate for developing a novel anti-cancer drug through suppressing cancer metabolism.

Journal ArticleDOI
TL;DR: Observations of this investigation suggest that LPA supports survival of T lymphoma cells via altering apoptosis and glucose metabolism through changing the level of reactive species, namely nitric oxide and reactive oxygen species along with expression of various survival and fructose metabolism regulatory molecules.
Abstract: Lysophosphatidic acid (LPA) is a bioactive lipid, which plays an indispensable role in various physiological and pathological processes. Moreover, an elevated level of LPA has been observed in malignancies of different origins and implicated in their progression via modulation of proliferation, apoptosis, invasion and metastasis. Interestingly, few recent reports suggest a pivotal role of LPA-modulated metabolism in oncogenesis of ovarian cancer. However, little is understood regarding the role of LPA in the development and progression of T cell malignancies, which are considered as one of the most challenging neoplasms for clinical management. Additionally, mechanisms underlying the LPA-dependent modulation of glucose metabolism in T cell lymphoma are also not known. Therefore, the present study was undertaken to explore the role of LPA-altered apoptosis and glucose metabolism on the survival of T lymphoma cells. Observations of this investigation suggest that LPA supports survival of T lymphoma cells via altering apoptosis and glucose metabolism through changing the level of reactive species, namely nitric oxide and reactive oxygen species along with expression of various survival and glucose metabolism regulatory molecules, including hypoxia-inducible factor 1-alpha, p53, Bcl2, and glucose transporter 3, hexokinase II, pyruvate kinase muscle isozyme 2, monocarboxylate transporter 1, pyruvate dehydrogenase kinase 1. Taken together' the results of the present investigation decipher the novel mechanisms of LPA-mediated survival of T lymphoma cells via modulation of apoptosis and glucose metabolism.

Journal ArticleDOI
TL;DR: In this article, a sesquiterpene quinone isolated from the marine sponge Smenospongia cerebriformis was used as a PDK1 inhibitor.
Abstract: In cancer cells, aerobic glycolysis rather than oxidative phosphorylation (OxPhos) is generally preferred for the production of ATP. In many cancers, highly expressed pyruvate dehydrogenase kinase 1 (PDK1) reduces the activity of pyruvate dehydrogenase (PDH) by inducing the phosphorylation of its E1α subunit (PDHA1) and subsequently, shifts the energy metabolism from OxPhos to aerobic glycolysis. Thus, PDK1 has been regarded as a target for anticancer treatment. Here, we report that ilimaquinone (IQ), a sesquiterpene quinone isolated from the marine sponge Smenospongia cerebriformis, might be a novel PDK1 inhibitor. IQ decreased the cell viability of human and murine cancer cells, such as A549, DLD-1, RKO, and LLC cells. The phosphorylation of PDHA1, the substrate of PDK1, was reduced by IQ in the A549 cells. IQ decreased the levels of secretory lactate and increased oxygen consumption. The anticancer effect of IQ was markedly reduced in PDHA1-knockout cells. Computational simulation and biochemical assay revealed that IQ interfered with the ATP binding pocket of PDK1 without affecting the interaction of PDK1 and the E2 subunit of the PDH complex. In addition, similar to other pyruvate dehydrogenase kinase inhibitors, IQ induced the generation of mitochondrial reactive oxygen species (ROS) and depolarized the mitochondrial membrane potential in the A549 cells. The apoptotic cell death induced by IQ treatment was rescued in the presence of MitoTEMPO, a mitochondrial ROS inhibitor. In conclusion, we suggest that IQ might be a novel candidate for anticancer therapeutics that act via the inhibition of PDK1 activity.

Journal ArticleDOI
31 Dec 2020-Cancers
TL;DR: In this article, the authors used acriflavine, a potent inhibitor of HIF-1α dimerization, as a tool to investigate whether HIF1α-regulated pathways contribute to the growth of melanoma cells under normoxia.
Abstract: Hypoxia-inducible factor (HIF)-1α is constitutively expressed in melanoma cells under normoxic conditions and its elevated expression correlates with the aggressiveness of melanoma tumors. Here, we used acriflavine, a potent inhibitor of HIF-1α dimerization, as a tool to investigate whether HIF-1α-regulated pathways contribute to the growth of melanoma cells under normoxia. We observed that acriflavine differentially modulated HIF-1α-regulated targets in melanoma under normoxic conditions, although acriflavine treatment resulted in over-expression of vascular endothelial growth factor (VEGF), its action clearly downregulated the expression of pyruvate dehydrogenase kinase 1 (PDK1), a well-known target of HIF-1α. Consequently, downregulation of PDK1 by acrifavine resulted in reduced glucose availability and suppression of the Warburg effect in melanoma cells. In addition, by inhibiting the AKT and RSK2 phosphorylation, acriflavine also avoided protective pathways necessary for survival under conditions of oxidative stress. Interestingly, we show that acriflavine targets activating transcription factor 4 (ATF4) for proteasomal degradation while suppressing the expression of microphthalmia-associated transcription factor (MITF), a master regulator of melanocyte development and a melanoma oncogene. Since acriflavine treatment results in the consistent death of melanoma cells, our results suggest that inhibition of HIF-1α function in melanoma could open new avenues for the treatment of this deadly disease regardless of the hypoxic condition of the tumor.

Journal ArticleDOI
TL;DR: Analysis of mitochondrial function revealed significantly increased mitochondrial reactive oxygen species and decreased membrane potential, which indicates that glucose metabolism reprogramming by PDK1 inhibition could induce mitochondrial quality control disorders to aggravate mitochondrial stress damage.
Abstract: Pyruvate dehydrogenase kinase 1 (PDK1) is a key factor in the connection between glycolysis and the tricarboxylic acid cycle. Restoring the mitochondrial OXPHOS function by inhibiting glycolysis through targeting PDK1 has become a hot spot for tumor therapy. However, the specific mechanism by which metabolic changes affect mitochondrial function remains unclear. Recent studies have found that mitochondrial quality control such as mitochondrial protein homeostasis plays an important role in maintaining mitochondrial function. Here, we focused on PDK1 and explored the specific mechanism by which metabolic changes affect mitochondrial OXPHOS function. We showed that glucose metabolism in HepG2 and HepG3B cells switched from anaerobic glycolysis to the mitochondrial tricarboxylic acid cycle under different concentrations of dichloroacetate (DCA) or short hairpin PDK1. After DCA treatment or knockdown of PDK1, the mitochondrial morphology was gradually condensed and exhibited shorter and more fragmented filaments. Additionally, expression of the mitochondrial autophagy proteins parkin and PTEN-induced kinase was down-regulated, and the biosynthetic protein peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and its regulated complex I, III, IV, and V protein were down-regulated. This indicated that PDK1 inhibition affected the level of mitochondrial quality control. Analysis of mitochondrial function revealed significantly increased mitochondrial reactive oxygen species and decreased membrane potential. Therefore, glucose metabolism reprogramming by PDK1 inhibition could induce mitochondrial quality control disorders to aggravate mitochondrial stress damage.

Journal ArticleDOI
TL;DR: H2S alleviates POCD through enhancing hippocampal Warburg effect, which subsequently improves synaptic plasticity in the hippocampus, and 2-Deoxy-d-glucose (2-DG) abolished NaHS-exerted protective effect on cognitive function.