scispace - formally typeset
Search or ask a question
Topic

Pyruvate dehydrogenase kinase

About: Pyruvate dehydrogenase kinase is a research topic. Over the lifetime, 4224 publications have been published within this topic receiving 161052 citations. The topic is also known as: [pyruvate dehydrogenase (lipoamide)] kinase & pyruvate dehydrogenase (lipoamide) kinase.


Papers
More filters
Journal ArticleDOI
TL;DR: The differential effects of insulin and DCA on pyruvate and lactate oxidation provide further evidence for compartmentation of cardiac carbohydrate metabolism.
Abstract: Despite the fact that lactate and pyruvate are potential substrates for energy production in vivo, our understanding of the control and regulation of carbohydrate metabolism is based principally on...

81 citations

Journal ArticleDOI
TL;DR: Recent developments concerning the structure-function relationship of this multienzyme complex from various organisms are discussed with emphasis on regulatory aspects of the mammalian complex.

81 citations

Journal ArticleDOI
TL;DR: Whether the mitochondrial capacity to produce ATP may limit the rate of recovery of trout white muscle and the changes in tissue metabolites associated with burst exercise and recovery in rainbow trout (Oncorhynchus mykiss) white muscle is examined.
Abstract: Recovery from burst exercise in fish is very slow. Lactate conversion to glycogen occurs primarily within white muscle and must be fueled by mitochondrially produced ATP. In a parallel study we characterized the changes in tissue metabolites associated with burst exercise and recovery in rainbow trout (Oncorhynchus mykiss) white muscle. The present study examines whether the mitochondrial capacity to produce ATP may limit the rate of recovery of trout white muscle. The cost (ATP.min-1.g-1) of glycogen resynthesis (0.05 mumol lactate converted.min-1.g tissue-1) was compared with the mitochondrial capacity to produce ATP. The cost of recovery can be met by only 3.5% of the maximal mitochondrial capacity. In fact, during recovery trout white muscle mitochondria operate at a small fraction of their in vitro maximum. This capacity is suppressed in vivo by highly inhibitory ATP/ADP and limiting phosphate. The primary signal for increased ATP synthesis associated with recovery is not a change in ATP/ADP but probably phosphate, elevated because of phosphocreatine hydrolysis and adenylate catabolism in the purine nucleotide cycle. At low ADP availability and suboptimal phosphate (less than 5 mM), acidosis enhances respiration. At high respiratory rates mitochondrial pyruvate oxidation is sensitive to pyruvate concentration over the physiological range (apparent Michaelis constant = 35-40 microM). This sensitivity is lost at the low rates that approximate in vivo respiration. Changes in lactate do not affect the kinetics of pyruvate oxidation. Fatty acid oxidation may spare pyruvate and lactate for use in glyconeogenesis, primarily through allosteric inhibition of pyruvate dehydrogenase rather than covalent modification.

81 citations

Journal ArticleDOI
TL;DR: Enzymic evidence supporting the operation of the Entner-Doudoroff pathway in the anaerobic conversion of glucose into ethanol and carbon dioxide by Zymomonas mobilis is presented and it is suggested that NAD is the physiological electron carrier in the balanced oxidation-reduction involved in ethanol formation.
Abstract: 1. Enzymic evidence supporting the operation of the Entner-Doudoroff pathway in the anaerobic conversion of glucose into ethanol and carbon dioxide by Zymomonas mobilis is presented. 2. Cell extracts catalysed the formation of equimolar amounts of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate. Evidence that 3-deoxy-2-oxo-6-phosphogluconate is an intermediate in this conversion was obtained. 3. Cell extracts of the organism contained the following enzymes: glucose 6-phosphate dehydrogenase (active with NAD and NADP), ethanol dehydrogenase (active with NAD), glyceraldehyde 3-phosphate dehydrogenase (active with NAD), hexokinase, gluconokinase, glucose dehydrogenase and pyruvate decarboxylase. Extracts also catalysed the overall conversion of glycerate 3-phosphate into pyruvate in the presence of ADP. 4. Gluconate dehydrogenase, fructose 1,6-diphosphate aldolase and NAD-NADP transhydrogenase were not detected. 5. It is suggested that NAD is the physiological electron carrier in the balanced oxidation-reduction involved in ethanol formation.

81 citations


Network Information
Related Topics (5)
Mitochondrion
51.5K papers, 3M citations
87% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Phosphorylation
69.3K papers, 3.8M citations
85% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
84% related
Intracellular
41.4K papers, 1.8M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202234
202161
202063
201959
201851