scispace - formally typeset
Search or ask a question
Topic

Pyruvate dehydrogenase kinase

About: Pyruvate dehydrogenase kinase is a research topic. Over the lifetime, 4224 publications have been published within this topic receiving 161052 citations. The topic is also known as: [pyruvate dehydrogenase (lipoamide)] kinase & pyruvate dehydrogenase (lipoamide) kinase.


Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that the 48000-mol.wt.
Abstract: 1. Incubation of mitochondria from heart, liver and kidney with [32P]phosphate allowed 32P incorporation into two intramitochondrial proteins, the decarboxylase alpha-subunit of the pyruvate dehydrogenase complex (mol.wt 42000) and a protein of mol.wt. 48000. 2. This latter protein incorporated 32P more slowly than did pyruvate dehydrogenase, was not precipitated by antibody to pyruvate dehydrogenase and showed behaviour distinct from that of pyruvate dehydrogenase towards high-speed centrifugation and pyruvate dehydrogenase phosphate phosphatase. 3. 32P incorporation into the protein was greatly diminished by the presence of 0.1 mM-4-methyl-2-oxopentanoate, but enhanced by pyruvate (1 mM), hypo-osmotic treatment of mitochondria and, under some conditions, by uncoupler. 4. The activity of branched-chain 2-oxo acid dehydrogenase was assayed in parallel experiments. Under appropriate conditions the enzyme was inhibited when 32P incorporation was increased and activated when incorporation was decreased. The data suggest that the 48000-mol.wt. phosphorylated protein is identical with the decarboxylase subunit of branched-chain 2-oxo acid dehydrogenase and that this enzyme may be controlled by a phosphorylation-dephosphorylation cycle akin to that for pyruvate dehydrogenase. 5. Strict correlation between activity and 32P incorporation was not observed, and a scheme for the regulation of the enzyme is proposed to account for these discrepancies.

55 citations

Journal ArticleDOI
TL;DR: Evidence is presented that anaerobic nitrite reduction with pyruvate involves at least the dehydrogenase subunit of the pyruVate dehydrogenases complex.
Abstract: SUMMARY: A strain of Escherichia coli with a mutation in the ana gene was shown to lack acetaldehyde dehydrogenase and alcohol dehydrogenase. The requirement of this strain for an external oxidant to grow anaerobically on glucose shows that the reduction of acetyl-CoA is the principal means of reoxidation of NADH produced during glycolysis in E. coli. Further mutants derived from the ana strain were shown to be affected in the enzymes involved in the fermentation of pyruvate (pyruvate formate-lyase, phosphotransacetylase, acetate kinase). A gene controlling acetate kinase (ackB) activity has been located at 39 min on the chromosomal map. Evidence is presented that anaerobic nitrite reduction with pyruvate involves at least the dehydrogenase subunit of the pyruvate dehydrogenase complex.

55 citations

Journal ArticleDOI
TL;DR: Results suggested that GRBP may be a factor that recognizes the glucose response motif site and may be involved in mediating carbohydrate response of the pyruvate kinase gene.

55 citations

Journal ArticleDOI
TL;DR: The mutation S163L in human heart lactate dehydrogenase removes substrate inhibition while only modestly reducing the turnover rate for pyruvate is suggested to be a general method for the removal of substrate inhibition in L-LDH enzymes.
Abstract: The mutation S163L in human heart lactate dehydrogenase removes substrate inhibition while only modestly reducing the turnover rate for pyruvate. Since this is the third enzyme to show this behaviour, we suggest that the S163L mutation is a general method for the removal of substrate inhibition in L-LDH enzymes. Engineering such enzymatic properties has clear industrial applications in the use of these enzymes to produce enantiomerically pure a-hydroxy acids. The mutation leads to two principal effects. (1) Substrate inhibition is caused by the formation of a covalent adduct between pyruvate and the oxidized form of the cofactor. The inability of S163L mutants to catalyse the formation of this inhibitory adduct is demonstrated. However, NMR experiments show that the orientation of the nicotinamide ring in the mutant NAD F binary complex is not perturbed. (2) The mutation also leads to a large increase in the KM for pyruvate. The kinetic and binding properties of S163L LDH mutants are accounted for by a mechanism which invokes a non-productive, bound form of the cofactor. Molecular modelling suggests a structure for this non-productive enzyme‐NADH complex.

55 citations

Book ChapterDOI
TL;DR: Data demonstrates that removal of HIF-1alpha causes an adaptive response in skeletal muscle akin to endurance training, and provides evidence for the suppression of mitochondrial biogenesis by Hif-1 alpha in normal tissue.
Abstract: During endurance training, exercising skeletal muscle experiences severe and repetitive oxygen stress, and the muscle’s ability to cope with and improve its function through that stress is central to its role in the body. The primary transcriptional response factor for hypoxic adaptation is hypoxia inducible factor-1α (HIF- 1α), which upregulates glycolysis and angiogenesis in response to low levels of tissue oxygenation. To examine the role of HIF-1α in endurance training, we have created mice specifically lacking skeletal muscle HIF-1α and subjected them to an endurance training protocol. We found that only wild type mice improve their oxidative capacity, as measured by the respiratory exchange ratio; surprisingly, we found that HIF-1α null mice have already upregulated this parameter without training. Furthermore, untrained HIF-1α null mice have an increased capillary to fiber ratio, and elevated oxidative enzyme activities. These changes correlate with constitutively activated AMP-activated protein kinase in the HIF-1α null muscles. Additionally, HIF-1α null muscles have decreased expression of pyruvate dehydrogenase kinase I, a HIF-1α target that inhibits oxidative metabolism. This data demonstrates that removal of HIF-1α causes an adaptive response in skeletal muscle akin to endurance training, and provides evidence for the suppression of mitochondrial biogenesis by HIF-1α in normal tissue.

55 citations


Network Information
Related Topics (5)
Mitochondrion
51.5K papers, 3M citations
87% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Phosphorylation
69.3K papers, 3.8M citations
85% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
84% related
Intracellular
41.4K papers, 1.8M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202234
202161
202063
201959
201851