scispace - formally typeset
Search or ask a question
Topic

Pyruvate dehydrogenase kinase

About: Pyruvate dehydrogenase kinase is a research topic. Over the lifetime, 4224 publications have been published within this topic receiving 161052 citations. The topic is also known as: [pyruvate dehydrogenase (lipoamide)] kinase & pyruvate dehydrogenase (lipoamide) kinase.


Papers
More filters
Journal ArticleDOI
TL;DR: Overall, the shift from fat utilization to pyruvate and lactate utilization resulted in a decrease in the energy of ATP hydrolysis and a hypo-energetic state in the livers of ChREBP-/- mice.

50 citations

Journal ArticleDOI
TL;DR: Reduced L-type pyruvate kinase from rat liver can be converted into an oxidized form by incubation with oxidized mercaptoethanol and oxidized glutathione and this interconversion can be completely reversed by incubating with reduced mercapteethanol.

49 citations

Journal ArticleDOI
TL;DR: It is concluded that, in pea leaf mitochondria, the pyruvate dehydrogenases and glycine decarboxylase complexes share the same dihydrolipoamide dehydrogenase.
Abstract: In order to compare the dihydrolipoamide dehydrogenase associated with the pyruvate dehydrogenase complex (E3) with that associated with the glycine decarboxylase complex (L-protein), we report for the first time the purification and characterization of the E3 component from pea leaf mitochondria. The first 30 amino acids of the N-terminal sequence of the mature E3 protein are identical with those of the mature L-protein of the glycine decarboxylase complex. Electrospray ionization-mass spectrometric analysis of E3 and the L-protein gave exactly the same molecular mass of 49,753 +/- 5 Da. We have also confirmed the primary structure of the L-protein, in particular the C-terminal sequence, deduced from the cDNA published by Bourguignon, Macherel, Neuburger and Douce [(1992) Eur. J. Biochem. 204, 865-873]. Western-blot analysis shows that specific polyclonal antibodies raised against the L-protein recognize specifically both E3 and L-protein but not the porcine dihydrolipoamide dehydrogenase. We conclude that, in pea leaf mitochondria, the pyruvate dehydrogenase and glycine decarboxylase complexes share the same dihydrolipoamide dehydrogenase. We have also confirmed by MS analysis that the FAD is not covalently bound to the enzyme.

49 citations

Journal ArticleDOI
TL;DR: Evidence is taken as conclusive evidence that the pyruvate dehydrogenase complex in pea leaf mitochondria undergoes interconversion between deactivated and activated states by covalent modification (phosphorylation-dephosphorylated) catalyzed by a kinase and phosphatase.

49 citations


Network Information
Related Topics (5)
Mitochondrion
51.5K papers, 3M citations
87% related
Protein kinase A
68.4K papers, 3.9M citations
86% related
Phosphorylation
69.3K papers, 3.8M citations
85% related
Endoplasmic reticulum
48.3K papers, 2.4M citations
84% related
Intracellular
41.4K papers, 1.8M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202234
202161
202063
201959
201851